首页> 外文会议>Evolutionary computation, machine learning and data mining in bioinformatics >Inferring Human Phenotype Networks from Genome-Wide Genetic Associations
【24h】

Inferring Human Phenotype Networks from Genome-Wide Genetic Associations

机译:从基因组范围的遗传协会推断人类表型网络。

获取原文
获取原文并翻译 | 示例

摘要

Networks are commonly used to represent and analyze large and complex systems of interacting elements. We build a human phenotype network (HPN) of over 600 physical attributes, diseases, and behavioral traits; based on more than 6,000 genetic variants (SNPs) from Genome-Wide Association Studies data. Using phenotype-to-SNP associations, and HapMap project data, we link traits based on the common patterns of human genetic variations, expanding previous studies from a gene-centric approach to that of shared risk-variants. The resulting network has a heavily right-skewed degree distribution, placing it in the scale-free region of the network topologies spectrum. Additional network metrics hint that the HPN shares properties with social networks. Using a standard community detection algorithm, we construct phenotype modules of similar traits without applying expert biological knowledge. These modules can be assimilated to the disease classes. However, we are able to classify phenotypes according to shared biology, and not arbitrary disease classes. We present a collection of documented clinical connections supported by the network. Furthermore, we highlight phenotypes modules and links that may underlie yet undiscovered genetic interactions. Despite its simplicity and current limitations the HPN shows tremendous potential to become a useful tool both in the unveiling of the diseases' common biology, and in the elaboration of diagnosis and treatments.
机译:网络通常用于表示和分析交互元素的大型和复杂系统。我们建立了包含600多种物理属性,疾病和行为特征的人类表型网络(HPN);基于全基因组关联研究数据中的6,000多种遗传变异(SNP)。使用表型与SNP的关联以及HapMap项目数据,我们基于人类遗传变异的常见模式将特征联系起来,从而将以前的研究从以基因为中心的方法扩展到了共享的风险变量。生成的网络具有严重的右偏度分布,将其置于网络拓扑频谱的无标度区域中。其他网络指标暗示HPN与社交网络共享属性。使用标准的社区检测算法,我们无需应用专业的生物学知识即可构建相似性状的表型模块。这些模块可以被同化为疾病类别。但是,我们能够根据共同的生物学分类表型,而不是根据任意疾病分类。我们提供了网络支持的已记录临床连接的集合。此外,我们重点介绍了可能是尚未发现的遗传相互作用基础的表型模块和链接。尽管其简单性和当前的局限性,但HPN在揭示疾病的共同生物学以及制定诊断和治疗方法方面均显示出成为有用工具的巨大潜力。

著录项

  • 来源
  • 会议地点 Vienna(AT)
  • 作者单位

    Department of Genetics, The Geisel Medical School at Dartmouth College, Lebanon,NH 03756, U.S.A.;

    Department of Genetics, The Geisel Medical School at Dartmouth College, Lebanon,NH 03756, U.S.A.;

    Department of Genetics, The Geisel Medical School at Dartmouth College, Lebanon,NH 03756, U.S.A.;

    Computational Epidemiology Group, Department of Veterinary Sciences, and Complex Systems Unit, Molecular Biotechnology Center, University of Torino, Italy;

    Department of Genetics, The Geisel Medical School at Dartmouth College, Lebanon,NH 03756, U.S.A.;

    Ontario Cancer Institute, Princess Margaret Cancer Center-University Health Network,Ontario Institute for Cancer Research and the Department of Medical Biophysics,University of Toronto, Toronto, ON, Canada;

    Department of Genetics, The Geisel Medical School at Dartmouth College, Lebanon,NH 03756, U.S.A.;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号