【24h】

HEMT's Design for Applications beyond 100GHz

机译:HEMT针对100GHz以上应用的设计

获取原文
获取原文并翻译 | 示例

摘要

Electronics up to 100 GHz have applications in atmospheric sensing, radio astronomy, passive imaging applications, wide-band communication systems. Millimeter Wave (MMW) analog and numerical circuits have to be developed. HEMTs on InP substrate are largely used in D-band (110-150 GHz) and G-band (140-220GHz) circuits. Improvement of frequency operation has been obtained by reduction of gate length to nanometer values and higher Indium content up to 80%. Another field of application is induced by the demand of higher bit-rate communication, which is rapidly growing. 40Gbit/s system has been recently developed [9] and intensive research on 80Gbit/s and 160Gbit/s is being done. Analog and numerical circuits used in such optical transmission systems can also be realized with nanometer gate length InP-based HEMTs. With InP-based HEMTs, it is possible to reach f_T higher than 472GHz with 30 nanometer gate length. To obtain that good value, gate recess undercut has been optimized. Cutoff frequency f_T is an important parameter in particularly for numerical circuits. However reduction of gate length will involve an increase of short channel effects. This point will limit the maximum oscillation frequency f_(max) and microwave performance of analog circuits. To avoid this effect, layer structure has to be correctly designed for sub-100 nanometer gate length HEMTs. In this paper, we present an optimized InAlAs/InGaAs/InP layer structure for sub-100 nanometer gate length HEMTs using a scaling down rule. HEMTs have been fabricated on such layer structure and compared with devices fabricated on standard structure usually used for 100 nanometer gate length HEMTs. Same gate lithography of 70 nanometer length has been achieved on both layer structures. DC and microwave characteristics are compared. Degradation of f_(max) in short channel HEMTs can be overcome by the use of transferred-substrate technological process. This technique offers the possibility to realize insulating buffer HEMTs or by the addition of a second gate under the channel, (double gate HEMTs). Technological process and electrical results of TS-HEMTs will be presented in this paper. Finally passive elements and specially transmission lines will be described and presented. These elements are also a limiting factor for the frequency raise of mm-wave circuits. Indeed these passive structures have to present low loss, high characteristic impedance range. Moreover for high speed mixed-mode circuits, these transmission lines have to be blinded to avoid any clock cross-talk phenomena.
机译:高达100 GHz的电子产品可用于大气传感,射电天文学,无源成像应用,宽带通信系统。必须开发毫米波(MMW)模拟和数字电路。 InP基板上的HEMT广泛用于D波段(110-150 GHz)和G波段(140-220GHz)电路。通过将栅极长度减小到纳米值,以及将铟含量提高到80%,可以改善频率操作。另一个应用领域是由于对高比特率通信的需求,这种需求正在迅速增长。最近开发了40Gbit / s系统[9],并且正在对80Gbit / s和160Gbit / s进行深入研究。此类光传输系统中使用的模拟和数字电路也可以通过纳米门长度基于InP的HEMT来实现。使用基于InP的HEMT,可以在30纳米栅极长度的情况下达到高于472GHz的f_T。为了获得良好的价值,对浇口凹槽底切进行了优化。截止频率f_T特别是对于数字电路而言是重要的参数。然而,栅极长度的减少将涉及短沟道效应的增加。这将限制最大振荡频率f_(max)和模拟电路的微波性能。为了避免这种影响,必须针对低于100纳米栅极长度的HEMT正确设计层结构。在本文中,我们使用缩小法则为小于100纳米栅极长度的HEMT提供了优化的InAlAs / InGaAs / InP层结构。已经在这种层结构上制造了HEMT,并将其与通常用于100纳米栅极长度的HEMT的在标准结构上制造的器件进行了比较。在两个层结构上都实现了70纳米长的相同栅极光刻。比较了直流和微波特性。短通道HEMT中f_(max)的降低可以通过使用转移底物工艺来克服。该技术提供了实现隔离缓冲器HEMT的可能性,或者通过在通道下方添加第二个栅极(双栅极HEMT)来实现。本文将介绍TS-HEMT的工艺过程和电学结果。最后,将描述和介绍无源元件,特别是传输线。这些元素也是毫米波电路频率上升的限制因素。实际上,这些无源结构必须具有低损耗,高特性阻抗范围。此外,对于高速混合模式电路,必须屏蔽这些传输线,以避免任何时钟串扰现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号