【24h】

Inference and Learning in Multi-dimensional Bayesian Network Classifiers

机译:多维贝叶斯网络分类器中的推理和学习

获取原文
获取原文并翻译 | 示例

摘要

We describe the family of multi-dimensional Bayesian network classifiers which include one or more class variables and multiple feature variables. The family does not require that every feature variable is modelled as being dependent on every class variable, which results in better modelling capabilities than families of models with a single class variable. For the family of multidimensional classifiers, we address the complexity of the classification problem and show that it can be solved in polynomial time for classifiers with a graphical structure of bounded treewidth over their feature variables and a restricted number of class variables. We further describe the learning problem for the subfamily of fully polytree-augmented multi-dimensional classifiers and show that its computational complexity is polynomial in the number of feature variables.
机译:我们描述了多维贝叶斯网络分类器的族,其中包括一个或多个类变量和多个特征变量。该族不需要将每个特征变量都建模为依赖于每个类变量,因此与具有单个类变量的模型族相比,其建模能力更好。对于多维分类器系列,我们解决了分类问题的复杂性,并表明对于具有特征树和有限数量的类变量的有界树宽图形结构的分类器,可以在多项式时间内解决。我们进一步描述了完全多树增强的多维分类器的子族的学习问题,并表明其计算复杂度是特征变量数量的多项式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号