首页> 外文会议>EPIA Conference on Artificial Intelligence >Comparison of Conventional and Deep Learning Based Methods for Pulmonary Nodule Segmentation in CT Images
【24h】

Comparison of Conventional and Deep Learning Based Methods for Pulmonary Nodule Segmentation in CT Images

机译:基于常规和深度学习的CT图像肺结节分割方法的比较

获取原文

摘要

Lung cancer is among the deadliest diseases in the world. The detection and characterization of pulmonary nodules are crucial for an accurate diagnosis, which is of vital importance to increase the patients' survival rates. The segmentation process contributes to the mentioned characterization, but faces several challenges, due to the diversity in nodular shape, size, and texture, as well as the presence of adjacent structures. This paper proposes two methods for pulmonary nodule segmentation in Computed Tomography (CT) scans. First, a conventional approach which applies the Sliding Band Filter (SBF) to estimate the center of the nodule, and consequently the filter's support points, matching the initial border coordinates. This preliminary segmentation is then refined to include mainly the nodular area, and no other regions (e.g. vessels and pleural wall). The second approach is based on Deep Learning, using the U-Net to achieve the same goal. This work compares both performances, and consequently identifies which one is the most promising tool to promote early lung cancer screening and improve nodule characterization. Both methodologies used 2653 nodules from the LIDC database: the SBF based one achieved a Dice score of 0.663, while the U-Net achieved 0.830, yielding more similar results to the ground truth reference annotated by specialists, and thus being a more reliable approach.
机译:肺癌是世界上最致命的疾病之一。肺结节的检测和表征对于准确诊断至关重要,这对于提高患者的生存率至关重要。分割过程有助于提到的特征,但是由于结节形状,大小和纹理的多样性以及相邻结构的存在,面临着一些挑战。本文提出了两种在计算机断层扫描(CT)扫描中进行肺结节分割的方法。首先,是一种常规方法,该方法应用滑带滤波器(SBF)来估计结节的中心,从而估计滤波器的支撑点,以匹配初始边界坐标。然后将这一初步分割精炼为主要包括结​​节区域,并且不包括其他区域(例如血管和胸膜壁)。第二种方法基于深度学习,使用U-Net来达到相同的目标。这项工作将两种性能进行了比较,从而确定了哪一种是促进早期肺癌筛查和改善结节特征的最有希望的工具。两种方法都使用了来自LIDC数据库的2653个结节:基于SBF的结节的Dice得分为0.663,而U-Net的结节得分为0.830,产生的结果与专家标注的地面真相参考更为相似,因此是一种更可靠的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号