【24h】

Cost optimization in cloud provisioning using Particle Swarm Optimization

机译:使用粒子群优化的云资源调配中的成本优化

获取原文
获取原文并翻译 | 示例

摘要

A cloud technology has emerged as a prominent workflow computing infrastructure. The need arises to optimize the allocation of resources to cloud provider's customers. An appropriate number of VMs must be created along with the allocation of supporting resources. Moreover, commercial clouds may have many different purchasing options. Finding optimal provisioning solutions is thus an NP-hard problem. Currently, there are many research works discussing the cloud provisioning cost optimization. However, most of the works mainly concerned with task scheduling. In this paper, we proposed a new framework where number of purchased instance, instance type, purchasing options, and task scheduling are considered within an optimization process. In order to identify a solution in a reasonable amount of time, we studied the use of Particle Swarm Optimization (PSO) technique. The decoding scheme is also designed to convert real values in PSO's particles into an integer representing a solution. The initial results show a promising performance in both the perspectives of the total cost and fitness convergence. We believe that our system will be useful in purchasing options decision. Budget can also be accurately estimated for any specified workflow-based application. We believe that the work will benefit the on-demand provisioning of the virtualized resources as a service in the near future.
机译:云技术已经成为一种重要的工作流计算基础架构。需要优化对云提供商的客户的资源分配。必须创建适当数量的VM以及支持资源的分配。此外,商业云可能具有许多不同的购买选项。因此,找到最佳的供应解决方案是一个NP难题。当前,有许多研究工作在讨论云供应成本优化。但是,大多数工作主要涉及任务调度。在本文中,我们提出了一个新框架,其中在优化过程中考虑了购买实例的数量,实例类型,购买选项和任务调度。为了在合理的时间内确定解决方案,我们研究了粒子群优化(PSO)技术的使用。解码方案还旨在将PSO粒子中的实数值转换为代表解的整数。初始结果在总成本和适应性融合两个方面均显示出令人鼓舞的性能。我们相信我们的系统将对购买期权的决策有用。还可以为任何指定的基于工作流程的应用程序准确估算预算。我们认为,这项工作将在不久的将来有益于按需提供虚拟化资源即服务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号