首页> 外文会议>第八届国际测试技术研讨会(8th International Symposium on Test and Measurement)论文集 >A Novel Method Based on Support Vector Machine for Pipeline Defect Identification
【24h】

A Novel Method Based on Support Vector Machine for Pipeline Defect Identification

机译:基于支持向量机的管道缺陷识别新方法

获取原文

摘要

Based on introducing the basic theory and principle of support vector machine (SVM), after de-noising the ultrasonic echo signals using wavelet transform and with a view of data mining, a novel approach using SVM classification is discussed to identify the defects. The experiment results show that unlike conventional and artificial neural networks (ANN) identification methods the new technique performs better than conventional evaluation ones with advantages of high efficiency, lower cost, easy implement on-line, excellent generalization. The approach provides a novel technique means for nondestructive defect identification of various defects.
机译:在介绍支持向量机(SVM)的基本理论和原理的基础上,利用小波变换对超声回波信号进行消噪,并从数据挖掘的角度出发,探讨了一种基于支持向量机分类的缺陷识别新方法。实验结果表明,与常规和人工神经网络(ANN)识别方法不同,该新技术具有效率高,成本低,易于在线实现,泛化性强等优点,优于常规评估方法。该方法为各种缺陷的非破坏性缺陷识别提供了一种新颖的技术手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号