首页> 外文会议>Earth resources and environmental remote sensing/GIS applications II >Sub-pixel method for analysis of optical data in determining the overburden dumps and open pit mines
【24h】

Sub-pixel method for analysis of optical data in determining the overburden dumps and open pit mines

机译:亚像素方法用于分析光学数据以确定上覆土和露天矿

获取原文
获取原文并翻译 | 示例

摘要

Mining plants are one of the factors having major negative impact on the area where they are situated. In our study this is the case of the mine production plant consisting of Elacite mine and Mirkovo floatation plant both located in central part of Stara Planina Mountain. In this study an attempt is made to delineate the overburden dumps and open pit mines by means of remotely sensed multispectral data with moderate spatial resolution (e.g. Landsat TM/ETM+ 30m) is a challenging task. The major difficulties arise from: 1) large period using the dump (introducing the need for multitemporal data); 2) the unknown proportions of vegetation, soil and embedding rock samples in the boundary areas and their seasonal variations; 3) relatively restricted access to places of interest. A variety of methods have been proposed to overcome the problems with pixels corresponding to two or more end-members, but a promising one is the soft classification which assign single pixel to several land cover classes in proportion to the area of the pixel that each class covers. In this scenario for every pixel of the data the correct proportion of the end-members should be found and then co-registered with the corresponding original pixel. As a result this sub-pixel classification procedure generates a number of fraction images equal to the number of land cover classes (end-members). The sub-pixel mapping algorithms we have exploited so far have one property in common: accuracy assessment of sub-pixel mapping algorithms is not easy because of missing high resolution ground truth data. One possible solution is to incorporate in the method adopted additional ex-situ and in-situ measured data from field and laboratory spectrometers with bandwidth about 1 nm. This study presents a successful implementation of soft classification method with additional, precise spectrometric data for determination of dump areas of the copper plant and open ore mine. The results achieved are proving that the in-situ gathered data provide coincidence of 93.5%. The main advantage of the presented technique is that mixed pixels are used during the training phase. Compared to these other techniques, the present one is simple, cheap and objective oriented. The results of this sub-pixel mapping implementation indicate that the technique can be useful to increase the resolution while keeping the classification accuracy high.
机译:采矿厂是对其所在地区域产生重大负面影响的因素之一。在我们的研究中,这就是位于斯塔拉普莱蒂纳山中部的Elacite矿山和Mirkovo浮选厂组成的矿山生产厂。在这项研究中,试图通过具有中等空间分辨率(例如Landsat TM / ETM + 30m)的遥感多光谱数据来划定上覆矿山和露天矿是一项艰巨的任务。主要的困难来自:1)使用转储的时间过长(引入了对多时间数据的需求); 2)边界地区植被,土壤和埋藏岩样的未知比例及其季节变化; 3)相对受限地进入名胜古迹。已经提出了多种方法来克服与两个或多个端部成员相对应的像素的问题,但是有希望的一种方法是软分类,该软分类将单个像素根据每个类别的像素面积成比例地分配给多个土地覆被类别。盖子。在这种情况下,对于数据的每个像素,应该找到正确比例的末端成员,然后与相应的原始像素共同注册。结果,该子像素分类程序生成的分数图像数量等于土地覆盖类别(端成员)的数量。到目前为止,我们已经利用的亚像素映射算法具有一个共同的属性:由于缺少高分辨率的地面真实数据,对亚像素映射算法的准确性进行评估并不容易。一种可能的解决方案是在方法中合并来自带宽约1 nm的现场和实验室光谱仪的其他非原位和原位测量数据。这项研究介绍了软分类方法的成功实施,该方法具有附加的精确光谱数据,可用于确定铜厂和露天矿的倾卸面积。所获得的结果证明,现场收集的数据符合率为93.5%。所提出的技术的主要优点是在训练阶段使用了混合像素。与这些其他技术相比,本技术简单,便宜且面向目标。该子像素映射实现的结果表明,该技术可用于提高分辨率,同时保持较高的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号