首页> 外文会议>Earth resources and environmental remote sensing / GIS applications V >Monitoring land use /land cover dynamics in northwestern Ethiopia using support vector machine
【24h】

Monitoring land use /land cover dynamics in northwestern Ethiopia using support vector machine

机译:使用支持向量机监测埃塞俄比亚西北部的土地利用/土地覆盖动态

获取原文
获取原文并翻译 | 示例

摘要

Land use/land cover (LULC) change assessment explores a terrestrial ecosystem in relation to the impact of natural processes and anthropogenic activities towards temporal and spatial change. This study explores spatial and quantitative dynamics of land use change in the semi-arid regions of northwestern Ethiopia using Landsat-5 (1984) and Landsat-8 (2014) which provided recent and historical LULC conditions of the region. Supervised classification algorithm using support vector machines (SVM) was used to map and monitor land use transformations. A post-classification change detection assessment was applied to individual image classification outputs of the best performing SVM model in order to identify respective two-date change trajectories. The change detection analysis with an extended transition matrix showed a net quantity change of 44.0% and total change of 53.7% of the study area, with the latter change is due to swap changes. Post-classification comparisons of the classified imagery identified a major woodland transformation to cropland which is attributed to population size and economic activity. The area of cropland has increased significantly (52.8%) in 2014 contributing to the reduction in native vegetation cover. In the study period, 55.6% of woodland lost signifying a significant change in ecosystems. This significant land use transformation is due to accelerated human impact and subsequent agricultural land expansion. The loss in vegetation cover has exposed the surface and it is common to see a haze of cloud in a most semiarid region of NW Ethiopia.
机译:土地利用/土地覆盖(LULC)变化评估探索了一个自然生态系统和人为活动对时空变化的影响有关的陆地生态系统。这项研究使用Landsat-5(1984)和Landsat-8(2014)探索了埃塞俄比亚西北部半干旱地区土地利用变化的空间和数量动态,提供了该地区近期和历史的土地利用,土地利用变化和土地利用状况。使用支持向量机(SVM)的监督分类算法来绘制和监视土地用途转换。将分类后变化检测评估应用于性能最佳的SVM模型的各个图像分类输出,以识别相应的两个日期的变化轨迹。使用扩展的转换矩阵进行的变化检测分析显示,净变化量为44.0%,总变化量为研究区域的53.7%,而后者的变化是由于交换量变化所致。分类图像的分类后比较确定了主要的林地向农田的转变,这归因于人口规模和经济活动。 2014年耕地面积大幅增加(52.8%),这有助于减少本地植被的覆盖。在研究期间,有55.6%的林地丧失了生态系统的重大变化。这种重大的土地用途转变是由于人类影响的加速以及随后农业土地的扩张。植被覆盖的损失使表面暴露了,在埃塞俄比亚西北部最半干旱的地区经常看到云雾。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号