首页> 外文会议>Earth observing missions and sensors: development, implementation, and characterization >Comparison of two methodologies for calibrating satellite instrumentsin the visible and near infrared
【24h】

Comparison of two methodologies for calibrating satellite instrumentsin the visible and near infrared

机译:两种在可见光和近红外中校准卫星仪器的方法的比较

获取原文
获取原文并翻译 | 示例

摘要

Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wave-length regions have been calibrated for radiance response in a two-step method. In the first step, the spectral response of the instrument is determined using a nearly monochromatic light source, such as a lamp-illuminated monochromator. Such sources only provide a relative spectral response (RSR) for the instrument, since they do not act as calibrated sources of light nor do they typically fill the field-of-view of the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. In the traditional method, the RSR and the sphere spectral radiance are combined and, with the instrument's response, determine the absolute spectral radiance responsivity of the instrument. More recently, an absolute calibration system using widely tunable monochromatic laser systems has been developed. Using these sources, the absolute spectral responsivity (ASR) of an instrument can be determined on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as integrating spheres. Here we describe the laser-based calibration and the traditional broad-band source-based calibration of the NPP VIIRS sensor, and compare the derived calibration coefficients for the instrument. Finally, we evaluate the impact of the new calibration approach on the on-orbit performance of the sensor.
机译:传统上,已经在两步法中对测量可见光和近红外波长区域中地球反射的太阳辐射的卫星仪器进行了辐射响应的校准。第一步,使用近乎单色的光源(例如灯照明的单色仪)确定仪器的光谱响应。这样的光源仅为仪器提供相对光谱响应(RSR),因为它们既不充当校准光源,也通常不填充仪器的视野。在第二步中,仪器将查看经过校准的宽带光源,例如灯照明的积分球。在传统方法中,RSR和球体光谱辐射率结合在一起,并根据仪器的响应确定仪器的绝对光谱辐射率响应度。最近,已经开发了使用可广泛调谐的单色激光系统的绝对校准系统。使用这些光源,可以在逐波长的基础上确定仪器的绝对光谱响应度(ASR)。通过这些单色ASR,可以直接计算出仪器波段对宽带辐射源的响应,从而无需校准的宽带光源(例如积分球)。在这里,我们描述了NPP VIIRS传感器的基于激光的校准和基于传统宽带光源的校准,并比较了该仪器的导出校准系数。最后,我们评估了新校准方法对传感器在轨性能的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号