首页> 外文会议>Document recognition and retrieval XVII >A stacked sequential learning method for investigator name recognition from Web-based medical articles
【24h】

A stacked sequential learning method for investigator name recognition from Web-based medical articles

机译:基于网络的医学文章中用于研究者姓名识别的堆叠式顺序学习方法

获取原文
获取原文并翻译 | 示例

摘要

"Investigator Names" is a newly required field in MEDLINE citations. It consists of personal names listed as members of corporate organizations in an article. Extracting investigator names automatically is necessary because of the increasing volume of articles reporting collaborative biomedical research in which a large number of investigators participate. In this paper, we present an SVM-based stacked sequential learning method in a novel application -recognizing named entities such as the first and last names of investigators from online medical journal articles. Stacked sequential learning is a meta-learning algorithm which can boost any base learner. It exploits contextual information by adding the predicted labels of the surrounding tokens as features. We apply this method to tag words in text paragraphs containing investigator names, and demonstrate that stacked sequential learning improves the performance of a nonsequential base learner such as an SVM classifier.
机译:“研究者姓名”是MEDLINE引文中新要求的字段。它由文章中列为公司组织成员的个人姓名组成。由于报告大量合作研究人员参与协作生物医学研究的文章的数量不断增加,因此自动提取研究人员姓名是必要的。在本文中,我们在一种新颖的应用程序中提出了一种基于SVM的堆叠顺序学习方法-识别命名实体,例如在线医学期刊文章中调查员的名字和姓氏。堆叠式顺序学习是一种元学习算法,可以促进任何基础学习者的学习。它通过添加周围标记的预测标签作为特征来利用上下文信息。我们将这种方法应用于包含调查员姓名的文本段落中的单词标记,并证明堆叠式顺序学习可以提高非顺序基础学习器(例如SVM分类器)的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号