首页> 外文会议>Distributed computing and networking >Gathering and Exclusive Searching on Rings under Minimal Assumptions
【24h】

Gathering and Exclusive Searching on Rings under Minimal Assumptions

机译:在最小假设下对戒指的聚会和排他性搜索

获取原文
获取原文并翻译 | 示例

摘要

Consider a set of mobile robots with minimal capabilities placed over distinct nodes of a discrete anonymous ring. Asynchronously, each robot takes a snapshot of the ring, determining which nodes are either occupied by robots or empty. Based on the observed configuration, it decides whether to move to one of its adjacent nodes or not. In the first case, it performs the computed move, eventually. The computation also depends on the required task. In this paper, we solve both the well-known Gathering and Exclusive Searching tasks. In the former problem, all robots must simultaneously occupy the same node, eventually. In the latter problem, the aim is to clear all edges of the graph. An edge is cleared if it is traversed by a robot or if both its endpoints are occupied. We consider the exclusive searching where it must be ensured that two robots never occupy the same node. Moreover, since the robots are oblivious, the clearing is perpetual, i.e., the ring is cleared infinitely often. In the literature, most contributions are restricted to a subset of initial configurations. Here, we design two different algorithms and provide a characterization of the initial configurations that permit the resolution of the problems under minimal assumptions.
机译:考虑一组具有最小功能的移动机器人,这些机器人放置在离散匿名环的不同节点上。异步地,每个机械手都对环进行快照,以确定哪些节点被机械手占用或为空。根据观察到的配置,它决定是否移动到其相邻节点之一。在第一种情况下,它最终执行计算出的移动。计算也取决于所需的任务。在本文中,我们解决了众所周知的“收集”和“排他搜索”任务。在前一个问题中,所有机器人最终都必须同时占据同一节点。在后一个问题中,目标是清除图形的所有边缘。如果边缘被机器人移动或两个端点都被占用,则边缘被清除。我们考虑了排他搜索,在这种情况下必须确保两个机器人永远不会占用同一节点。而且,由于机械手是无遗忘的,所以清除是永久的,即,经常无限地清除环。在文献中,大多数贡献仅限于初始配置的子集。在这里,我们设计了两种不同的算法,并提供了初始配置的特征,这些特征可以在最小假设下解决问题。

著录项

  • 来源
  • 会议地点 Coimbatore(IN)
  • 作者单位

    Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, Italy;

    Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, Italy;

    Inria and Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, France;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号