首页> 外文会议>Disruptive technologies in sensors and sensor systems >Temporal Dynamics of Frequency-tunable Graphene-based Plasmonic Grating Structures for Ultra-broadband Terahertz Communication
【24h】

Temporal Dynamics of Frequency-tunable Graphene-based Plasmonic Grating Structures for Ultra-broadband Terahertz Communication

机译:用于超宽带太赫兹通信的基于频率可调石墨烯的等离子光栅结构的时间动态

获取原文
获取原文并翻译 | 示例

摘要

Terahertz (THz) communication is envisioned as a key wireless technology to satisfy the need for 1000x faster wireless data rates. To date, major progress on both electronic and photonic technologies are finally closing the so-called THz gap. Among others, graphene-based plasmonic nano-devices have been proposed as a way to enable ultra-broadband communications above 1 THz. The unique dynamic complex conductivity of graphene enables the propagation of Surface Plasmon Polariton (SPP) waves at THz frequencies. In addition, the conductivity of graphene and, thus, the SPP propagation properties, can be dynamically tuned by means of electrostatic biasing or material doping. This result opens the door to frequency-tunable devices for THz communications. In this paper, the temporal dynamics of graphene-enhanced metallic grating structures used for excitation and detection of SPP waves at THz frequencies are analytically and numerically modeled. More specifically, the response of a metallic grating structure built on top of a graphene-based heterostructure is analyzed by taking into account the grating period and duty cycle and the Fermi energy of the graphene layer. Then, the interfacial charge transfer between a metallic back-gate and the graphene layer in a metal/dielectric/graphene stack is analytically modeled, and the range of achievable Fermi energies is determined. Finally, the rate at which the Fermi energy in graphene can be tuned is estimated starting from the transmission line model of graphene. Extensive numerical and simulation results with COMSOL Multi-physics are provided. The results show that the proposed structure enables dynamic frequency systems with THz bandwidths, thus, enabling resilient communication techniques such as time-hopping THz modulations.
机译:太赫兹(THz)通信被视为一种关键的无线技术,可以满足1000倍更快的无线数据速率的需求。迄今为止,电子技术和光子技术的重大进展终于消除了所谓的太赫兹差距。其中,已经提出了基于石墨烯的等离子体纳米器件作为实现高于1 THz的超宽带通信的方法。石墨烯具有独特的动态复电导率,可在THz频率下传播表面等离子极化(SPP)波。另外,可以借助于静电偏压或材料掺杂来动态地调节石墨烯的电导率以及因此的SPP传播特性。这一结果为用于THz通信的频率可调设备打开了大门。在本文中,对在THz频率下激发和检测SPP波的石墨烯增强型金属光栅结构的时间动力学进行了解析和数值建模。更具体地,通过考虑光栅周期和占空比以及石墨烯层的费米能来分析建立在基于石墨烯的异质结构之上的金属光栅结构的响应。然后,对金属背栅与金属/电介质/石墨烯叠层中的石墨烯层之间的界面电荷转移进行了解析建模,并确定了可达到的费米能。最后,从石墨烯的传输线模型开始估算石墨烯中费米能量的调谐速率。提供了COMSOL Multi-physics的广泛数值和仿真结果。结果表明,所提出的结构使具有THz带宽的动态频率系统成为可能,从而实现了弹性通信技术,例如时频THz调制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号