In this article, we propose to investigate the extension of the E~2DT (squared Euclidean Distance Transformation) on irregular isothetic grids. We give two algorithms to handle different structurations of grids. We first describe a simple approach based on the complete Voronoi diagram of the background irregular cells. Naturally, this is a fast approach on sparse and chaotic grids. Then, we extend the separable algorithm defined on square regular grids proposed in [22], more convenient for dense grids. Those two methodologies permit to process efficiently E~2DT on every irregular isothetic grids.
展开▼