首页> 外文会议>Device and Process Technologies for Microelectronics, MEMS, and Photonics IV >Modelling of sacrificial spin-on glass (SOG) etching in non-straight microchannels using hydrofluoric acid
【24h】

Modelling of sacrificial spin-on glass (SOG) etching in non-straight microchannels using hydrofluoric acid

机译:使用氢氟酸在非直线微通道中的牺牲旋涂玻璃(SOG)蚀刻建模

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper studies spin-on glass (SOG) etching in T-shaped microchannels using hydrofluoric acid (HF). An etching model based on non-first order chemical reaction/steady-state diffusion sacrificial layer etching mechanism is presented to compensate for the etching effect at channel junction. Microchannels are formed on silicon substrate by deep reactive ion etching (DRIE). Samples with channel depth varying from 1 μm to 6 μm are prepared by varying exposure time to reactant gas in DRIE chamber. Channel widths prior to the junction are varied from 2 μm to 10 μm while channel width beyond the junction is fixed at 5 μm. The channels are then filled with SOG by multiple spin, bake and cure processes. After etchback planarization using 5% HF solution, the samples are coated with 1.5 μm thick positive photoresist. An etch window is opened at channel fronts to expose underlying SOG. The samples are then time-etched in 5% HF solution and etch front propagation is observed under optical microscope through the transparent photoresist layer. It is observed that SOG etch rate in the microchannels is independent of channel width or channel depth. SOG etch rate at channel's T-junction is 0.67 times lower than etch rate in the straight channels preceding it due to HF concentration variation and etch product transfer rate variation. The proposed model fits experimental data well. Offset crosses vent pattern is determined as a good candidate for removing sacrificial oxide under an enclosed cap structure.
机译:本文研究使用氢氟酸(HF)在T形微通道中蚀刻旋涂玻璃(SOG)。提出了基于非一级化学反应/稳态扩散牺牲层刻蚀机理的刻蚀模型,以补偿沟道结处的刻蚀效果。通过深反应离子刻蚀(DRIE)在硅衬底上形成微通道。通过改变对DRIE腔室中反应气体的暴露时间,可以制备通道深度为1μm至6μm的样品。结之前的沟道宽度在2μm至10μm之间变化,而结以外的沟道宽度固定为5μm。然后通过多次旋转,烘烤和固化过程将SOG填充到通道中。在使用5%HF溶液进行回蚀平面化之后,将样品涂上1.5μm厚的正性光刻胶。在通道前端打开蚀刻窗口以暴露底层SOG。然后将样品在5%的HF溶液中进行时间蚀刻,并在光学显微镜下通过透明的光致抗蚀剂层观察到蚀刻的正面传播。可以观察到,微通道中的SOG蚀刻速率与通道宽度或通道深度无关。由于HF浓度变化和蚀刻产物传输速率变化,在沟道T形结处的SOG蚀刻速率比在其之前的直沟道中的蚀刻速率低0.67倍。所提出的模型非常适合实验数据。偏置十字形排气孔图案被确定为在封闭盖结构下去除牺牲氧化物的良好选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号