首页> 外文会议>Device and Process Technologies for Microelectronics, MEMS, and Photonics IV >'Patterning' frictional differentiation to a polymer surface by atomic force microscopy
【24h】

'Patterning' frictional differentiation to a polymer surface by atomic force microscopy

机译:通过原子力显微镜对聚合物表面进行“图案化”摩擦区分

获取原文
获取原文并翻译 | 示例

摘要

The surface structure and chemistry of polymers affect their functionality for a great range of applications in areas as diverse as biosensors, corrosion protection, semiconductor processing, biofouling, tissue engineering and biomaterials technology. Some of those applications require purposeful tailoring of laterally differentiated regions (e.g., array structures for multi-channel/multi-analyte biosensors and patterning for promotion of selective adhesion of cells/proteins). While such tailoring is currently taking place on the μm-scale, it is likely in the future to progress into the nm-regime. Attachment of biological moieties at surfaces and interfaces has been shown to be highly dependant on local chemistry at the intended site of attachment. Additionally, the local molecular-scale geometry may promote or hinder attachment events, as in the case of biofilms. To date, however, the effect of frictional properties of surfaces for chemical and biomolecular attachment is a much less understood phenomenon. In this study we show controlled patterning of a polymer surface (polydimethylsiloxane (PDMS)) arising from manipulation by Atomic Force Microscopy (AFM). PDMS is a bio-active/selective polymer having a broad range of applications, such as biomedical devices, molecular stamps, hydraulic fluid devices and in soft lithography. The polymer surface has been selectively altered by high speed scanning in order to generate regions on the surface that exhibit differentiated frictional properties. By altering the loading force, scan width, and area of the AFM probe-to-polymer contact it is possible to produce a variety of detailed and complex patterns with frictional contrast, including anisotropic frictional gradients on the polymer surface. The controlled manipulation of the polymer surface can be carried out on the micro-, meso- and nano-scale.
机译:聚合物的表面结构和化学性质会影响其功能,从而在生物传感器,腐蚀防护,半导体加工,生物污染,组织工程和生物材料技术等众多领域中广泛应用。这些应用中的一些要求对横向区分的区域进行有目的的剪裁(例如,用于多通道/多分析物生物传感器的阵列结构和用于促进细胞/蛋白质的选择性粘附的图案化)。尽管目前正在以微米级进行这种剪裁,但将来可能会发展到纳米级。已经证明生物部分在表面和界面上的附着高度依赖于预期的附着部位处的局部化学。另外,如生物膜的情况,局部分子尺度的几何形状可能促进或阻碍附着事件。然而,迄今为止,对于化学和生物分子附着的表面的摩擦性能的影响还很少被理解。在这项研究中,我们显示了由原子力显微镜(AFM)操纵产生的聚合物表面(聚二甲基硅氧烷(PDMS))的受控图案。 PDMS是一种生物活性/选择性聚合物,具有广泛的应用,例如生物医学设备,分子印模,液压流体设备以及软光刻。聚合物表面已经通过高速扫描选择性地改变,以便在表面上产生表现出不同的摩擦性能的区域。通过改变AFM探针与聚合物接触的加载力,扫描宽度和面积,可以产生各种具有摩擦对比的详细而复杂的图案,包括聚合物表面上的各向异性摩擦梯度。聚合物表面的受控处理可以在微米,中观和纳米尺度上进行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号