首页> 外文会议>Detection and sensing of mines, expolosive objects, and obscured targets XVIII >Multi-Image Texton Selection for Sonar Image Seabed Co-Segmentation
【24h】

Multi-Image Texton Selection for Sonar Image Seabed Co-Segmentation

机译:声纳图像海底联合分段的多图像Texton选择

获取原文
获取原文并翻译 | 示例

摘要

In this paper we describe an unsupervised approach to seabed co-segmentation over the multiple sonar images collected in sonar surveys. We adapt a traditional single image segmentation texton-based approach to the sonar survey task by modifying the texture extraction filter bank to better model possible sonar image textures. Two different algorithms for building a universal texton library are presented that produce common pixel labels across multiple images. Following pixel labeling with the universal texton library, images are quantized into superpixels and co-segmented using a DP clustering algorithm. The segmentation results for both texton library selection criteria are contrasted and compared for a labeled set of SAS images with various discernable textures.
机译:在本文中,我们描述了在声纳勘测中收集的多个声纳图像上无监督的海底共分割方法。我们通过修改纹理提取过滤器库以更好地对可能的声纳图像纹理进行建模,将基于传统单图像分割基于texton的方法应用于声纳测量任务。提出了两种用于构建通用Texton库的算法,这些算法可在多个图像上生成公共像素标签。在使用通用texton库标记像素之后,将图像量化为超像素,并使用DP聚类算法进行共分割。对比并比较了两种texton库选择标准的分割结果,以比较具有各种可识别纹理的SAS图像的标记集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号