首页> 外文会议>Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXII >Multispectral signal processing of synthetic aperture acoustics for side attack explosive ballistic detection
【24h】

Multispectral signal processing of synthetic aperture acoustics for side attack explosive ballistic detection

机译:合成孔径声学的多光谱信号处理,用于侧面攻击爆炸弹道探测

获取原文
获取原文并翻译 | 示例

摘要

Substantial interest resides in identifying sensors, algorithms and fusion theories to detect explosive hazards. This is a significant research effort because it impacts the safety and lives of civilians and soldiers alike. However, a challenging aspect of this field is we are not in conflict with the threats (objects) per se. Instead, we are dealing with people and their changing strategies and preferred method of delivery. Herein, we investigate one method of threat delivery, side attack explosive ballistics (SAEB). In particular, we explore a vehicle-mounted synthetic aperture acoustic (SAA) platform. First, a wide band SAA signal is decomposed into a higher spectral resolution signal. Next, different multi/hyperspectral signal processing techniques are explored for manual band analysis and selection. Last, a convolutional neural network (CNN) is used for filter learning and classification relative to the full signal versus different subbands. Performance is assessed in the context of receiver operating characteristic (ROC) curves on data from a U.S. Army test site that contains multiple target and clutter types, levels of concealment and times of day. Preliminary results indicate that a machine learned CNN solution can achieve better performance than our previously established human engineered Fourier-based Fraz feature with kernel support vector machine classification.
机译:重大兴趣在于识别传感器,算法和融合理论以检测爆炸危险。这是一项重大的研究工作,因为它会影响平民和士兵的安全和生命。但是,该领域的一个挑战性方面是我们与威胁(对象)本身并不冲突。相反,我们正在处理人员及其不断变化的策略和首选的交付方式。本文中,我们研究了一种威胁传递方法,即侧面攻击爆炸弹道(SAEB)。特别是,我们探索了一种车载合成孔径声(SAA)平台。首先,将宽带SAA信号分解为更高的频谱分辨率信号。接下来,探索了不同的多/高光谱信号处理技术,以进行手动频带分析和选择。最后,卷积神经网络(CNN)用于相对于不同子带的完整信号进行滤波器学习和分类。性能是根据来自美国陆军测试地点的接收器工作特性(ROC)曲线进行评估的,该数据包含多种目标和杂波类型,隐蔽程度和一天中的时间。初步结果表明,机器学习的CNN解决方案比我们先前建立的基于人工傅立叶的Fraz功能(带有内核支持向量机分类)可以实现更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号