首页> 外文会议>Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXI >Fusion of KLMS and Blob Based Pre-Screener for Buried Landmine Detection Using Ground Penetrating Radar
【24h】

Fusion of KLMS and Blob Based Pre-Screener for Buried Landmine Detection Using Ground Penetrating Radar

机译:KLMS和基于Blob的预筛选器的融合,用于探地雷达探测埋地雷

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a decision level fusion using multiple pre-screener algorithms is proposed for the detection of buried landmines from Ground Penetrating Radar (GPR) data. The Kernel Least Mean Square (KLMS) and the Blob Filter pre-screeners are fused together to work in real time with less false alarms and higher true detection rates. The effect of the kernel variance is investigated for the KLMS algorithm. Also, the results of the KLMS and KLMS+Blob filter algorithms are compared to the LMS method in terms of processing time and false alarm rates. Proposed algorithm is tested on both simulated data and real data collected at the field of IPA Defence at METU, Ankara, Turkey.
机译:本文提出了一种使用多种预筛选算法的决策级融合技术,用于从探地雷达(GPR)数据中检测掩埋的地雷。内核最小均方(KLMS)和Blob滤波器预筛选器融合在一起,可以实时工作,虚假警报更少,真实检测率更高。对于KLMS算法,研究了核方差的影响。同样,将KLMS和KLMS + Blob滤波器算法的结果与LMS方法的处理时间和误报率进行了比较。拟议的算法在土耳其安卡拉METU的IPA防御领域收集的模拟数据和实际数据上均经过测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号