首页> 外文会议>Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XX >Automatic Target Detection and Discrimination Algorithm applicable to Ground Penetrating Radar Data
【24h】

Automatic Target Detection and Discrimination Algorithm applicable to Ground Penetrating Radar Data

机译:适用于探地雷达数据的自动目标检测与识别算法

获取原文
获取原文并翻译 | 示例

摘要

Ground Penetrating Radar (GPR) is considered as one of the promising technologies to address the challenges of detecting buried threat objects. However, the success rate of the GPR systems are limited by operational conditions and the robustness of automatic target recognition (ATR) algorithms embedded with the systems. In this paper an alternate ATR algorithm applicable to GPR is developed by combining image pre-processing and machine learning techniques. The aim of this research was to design a potential solution for detection of threat alarms using GPR data and reducing the number of false alarms through classification into one of the predefined categories of target types. The proposed ATR algorithm has been validated using a data set acquired by a vehicle-mounted GPR array. The data set utilized in this investigation involved grayscale GPR images of threat objects (both conventional and improvised) commonly found in realistic operational scenarios. Target based summaries of the algorithm performance are presented in terms of the probability of detection, false alarm rate, and confidence of allocating detections to a predefined target class.
机译:探地雷达(GPR)被认为是解决探测掩埋威胁物体挑战的有前途的技术之一。但是,GPR系统的成功率受操作条件和系统中嵌入的自动目标识别(ATR)算法的健壮性的限制。本文通过结合图像预处理和机器学习技术,开发了适用于GPR的另一种ATR算法。这项研究的目的是设计一种潜在的解决方案,以使用GPR数据检测威胁警报,并通过将其分类为目标类型的预定义类别之一来减少错误警报的数量。使用车载GPR阵列获取的数据集对提出的ATR算法进行了验证。在此调查中使用的数据集涉及现实操作场景中常见的威胁对象(常规和临时)的灰度GPR图像。根据检测的概率,错误警报率以及将检测分配给预定义的目标类别的置信度来表示算法性能的基于目标的摘要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号