Dept. of Electrical and Computer Engineering, University of Missouri, Columbia, MO, USA 65211;
rnDept. of Electrical and Computer Engineering, University of Missouri, Columbia, MO, USA 65211;
rnDept. of Electrical and Computer Engineering, University of Missouri, Columbia, MO, USA 65211;
rnDept. of Electrical and Computer Engineering, University of Missouri, Columbia, MO, USA 65211;
rnU.S. Army REDCOM CERDEC NVESD, Fort Belvoir, Virginia, USA 22060;
rnU.S. Army REDCOM CERDEC NVESD, Fort Belvoir, Virginia, USA 22060;
rnDept. Of Electrical Engineering, University of New York at Buffalo, Amherst, NY, USA 14260;
sensor fusion; forward-looking explosive hazards detection; ground-penetrating radar; false alarm rejection;
机译:在高分辨率卫星图像中使用具有可控误报率的深度学习功能的油箱检测新方法
机译:利用深层学习特征对高分辨率卫星图像中的防深速目特征的新方法
机译:极化沿轨干涉合成孔径雷达图像中慢速目标的恒定误报率检测
机译:在前瞻性系统中使用FLGPR彩色图像改进检测和误报抑制
机译:低速率误报异常的入侵检测系统,具有单级SVM
机译:前视红外(FLIR)图像中目标检测和跟踪的进展
机译:一种基于多代理的方法,利用蜜罐改善入侵检测系统误报率
机译:在前视系统中使用FLGpR和彩色图像改进检测和误报警拒绝