首页> 外文会议>Detection and sensing of mines, expolosive objects, and obscured targets XIX >Physics-based Deformations of Ground Penetrating Radar Signals to Improve the Detection of Buried Explosives
【24h】

Physics-based Deformations of Ground Penetrating Radar Signals to Improve the Detection of Buried Explosives

机译:基于物理的探地雷达信号变形,以改善对埋炸药的探测

获取原文
获取原文并翻译 | 示例

摘要

A number of recent algorithms have shown improved performance in detecting buried explosive threats by statistically modeling target responses observed in ground penetrating radar (GPR) signals. These methods extract features from known examples of target responses to train a statistical classifier. The statistical classifiers are then used to identify targets emplaced in previously unseen conditions. Due to the variation in target GPR responses caused by factors such as differing soil conditions, classifiers require training on a large, varied dataset to encompass the signal variation expected in operational conditions. These training collections generally involve burying each target type in a number of soil conditions, at a number of burial depths. The cost associated with both burying the targets, and collecting the data is extremely high. Thus, the conditions and depths sampled cover only a subset of possible scenarios. The goal of this research is to improve the ability of a classifier to generalize to new conditions by deforming target responses in accordance with the physical properties of GPR signals. These signal deformations can simulate a target response under different conditions than those represented in the data collection. This research shows that improved detection performance in previously unseen conditions can be achieved by utilizing deformations, even when the training dataset is limited.
机译:通过对在地面穿透雷达(GPR)信号中观察到的目标响应进行统计建模,许多最新算法已显示出改进的检测掩埋爆炸威胁的性能。这些方法从目标响应的已知示例中提取特征,以训练统计分类器。然后,使用统计分类器来识别在先前看不见的条件下放置的目标。由于由诸如土壤条件不同等因素引起的目标GPR响应变化,分类器需要在庞大的变化数据集上进行训练,以涵盖操作条件下预期的信号变化。这些训练集通常涉及将每种目标类型掩埋在一定数量的土壤条件下的多个埋葬深度。掩埋目标和收集数据的成本非常高。因此,采样的条件和深度仅覆盖了可能情景的一部分。这项研究的目的是通过根据GPR信号的物理特性使目标响应变形来提高分类器归纳为新条件的能力。这些信号变形可以在不同于数据收集所表示的条件下模拟目标响应。这项研究表明,即使在训练数据集有限的情况下,也可以通过利用变形来实现在以前看不见的条件下改善的检测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号