首页> 外文会议>Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIII >The Generalized SEA and a statistical signal processing approachapplied to UXO discrimination
【24h】

The Generalized SEA and a statistical signal processing approachapplied to UXO discrimination

机译:广义SEA和统计信号处理方法应用于UXO判别

获取原文
获取原文并翻译 | 示例

摘要

The prohibitive costs of excavating all geophysical anomalies are well known and are one of the greatest impediments to efficient clean-up of unexploded ordnance (UXO)-contaminated lands at Department of Defense (DoD) and Department of Energy (DOE) sites. Innovative discrimination techniques that can reliably distinguish between hazardous UXO and non-hazardous metallic items are required. The key element to overcoming these difficulties lies in the development of advanced processing techniques that can treat complex data sets to maximize the probability of accurate classification and minimize the false alarm rate. To address these issues, this paper uses a new approach that combines a physically complete EMI forward model called the Generalized Standardized Excitation Approach (GSEA) with a statistical signal processing approach named Mixed Modeling (MM). UXO discrimination requires the inversion of digital geophysical data, which could be divided into two pars: 1) linear - estimating model parameters such as the amplitudes of the responding GSEA sources and 2) non-linear - inverting an object's location and orientation. Usually the data inversion is an ill-posed problem that requires regularization. Determining the regularization parameter is not straightforward, and in many cases depends on personal experience. To overcome this issue, in this paper we employ the statistical approach to estimate regularization parameters from actual data using the un-surprised mixed model approach. In addition, once the non-linear inverse scattering parameters are estimated then for UXO discrimination a covariance matrix and confidence interval are derived. The theoretical basis and practical realization of the combined GSEA-Mixed Model algorithm are demonstrated. Discrimination studies are done for ATC-UXO sets of time-domain EMI data collected at the ERDC UXO test stand site in Vicksburg, Mississippi.
机译:挖掘所有地球物理异常的高昂代价是众所周知的,并且是有效清理国防部(DoD)和能源部(DOE)站点未爆炸弹药(UXO)污染土地的最大障碍之一。需要能够可靠地区分危险的未爆弹药和非危险的金属物品的创新识别技术。克服这些困难的关键因素在于开发先进的处理技术,该技术可以处理复杂的数据集,以最大程度地提高准确分类的可能性,并最大程度地降低误报率。为了解决这些问题,本文使用了一种新方法,该方法将物理上完整的EMI正向模型(称为通用标准化激励方法(GSEA))与统计信号处理方法(称为混合模型(MM))相结合。 UXO判别需要对数字地球物理数据进行反演,这可以分为两个参数:1)线性-估计模型参数(例如响应的GSEA源的振幅)和2)非线性-反转物体的位置和方向。通常,数据倒置是一个不适定的问题,需要进行正则化。确定正则化参数并不简单,并且在许多情况下取决于个人经验。为了克服这个问题,在本文中,我们采用统计方法,使用无意外的混合模型方法从实际数据中估计正则化参数。另外,一旦估计了非线性逆散射参数,则对于UXO鉴别,导出协方差矩阵和置信区间。阐述了GSEA混合模型算法的理论基础和实际实现。对在密西西比州维克斯堡的ERDC UXO测试站现场收集的ATC-UXO时域EMI数据进行了区分研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号