【24h】

Automated target classification in high resolution dual frequency sonar imagery

机译:高分辨率双频声纳图像中的自动目标分类

获取原文
获取原文并翻译 | 示例

摘要

An improved computer-aided-detection / computer-aided-classification (CAD/CAC) processing string has been developed. The classified objects of 2 distinct strings are fused using the classification confidence values and their expansions as features, and using "summing" or log-likelihood-ratio-test (LLRT) based fusion rules. The utility of the overall processing strings and their fusion was demonstrated with new high-resolution dual frequency sonar imagery. Three significant fusion algorithm improvements were made. First, a nonlinear 2nd order (Volterra) feature LLRT fusion algorithm was developed. Second, a Box-Cox nonlinear feature LLRT fusion algorithm was developed. The Box-Cox transformation consists of raising the features to a to-be-determined power. Third, a repeated application of a subset feature selection / feature orthogonalization / Volterra feature LLRT fusion block was utilized. It was shown that cascaded Volterra feature LLRT fusion of the CAD/CAC processing strings outperforms summing, baseline single-stage Volterra and Box-Cox feature LLRT algorithms, yielding significant improvements over the best single CAD/CAC processing string results, and providing the capability to correctly call the majority of targets while maintaining a very low false alarm rate. Additionally, the robustness of cascaded Volterra feature fusion was demonstrated, by showing that the algorithm yields similar performance with the training and test sets.
机译:已经开发了一种改进的计算机辅助检测/计算机辅助分类(CAD / CAC)处理字符串。使用分类置信度值及其扩展作为特征,并使用基于“求和”或对数似然比测试(LLRT)的融合规则来融合2个不同字符串的分类对象。新的高分辨率双频声纳图像演示了整体处理弦及其融合的实用性。进行了三项重大的融合算法改进。首先,开发了非线性二阶(Volterra)特征LLRT融合算法。其次,开发了Box-Cox非线性特征LLRT融合算法。 Box-Cox转换包括将功能提升到确定的功能。第三,利用子集特征选择/特征正交化/ Volterra特征LLRT融合块的重复应用。结果表明,CAD / CAC处理字符串的级联Volterra功能LLRT融合优于汇总,基线单级Volterra和Box-Cox功能LLRT算法,与最佳的单个CAD / CAC处理字符串结果相比,有了显着改进,并提供了功能正确调用大多数目标,同时保持极低的误报率。此外,通过显示该算法产生与训练集和测试集相似的性能,证明了级联Volterra特征融合的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号