首页> 外文会议>Design and quality for biomedical technologies IV >Correction of Axial Optical Aberrations in Hyper-spectral Imaging Systems
【24h】

Correction of Axial Optical Aberrations in Hyper-spectral Imaging Systems

机译:高光谱成像系统中轴向光学像差的校正

获取原文
获取原文并翻译 | 示例

摘要

In hyper-spectral imaging systems with a wide spectral range, axial optical aberrations may lead to a significant blurring of image intensities in certain parts of the spectral range. Axial optical aberrations arise from the index-of-refraction variations that is dependent on the wavelength of incident light. To correct axial optical aberrations the point-spread function (PSF) of the image acquisition system needs to be identified. We proposed a multi-frame joint blur identification and image restoration method that maximizes the likelihood of local image energy distributions between spectral images. Gaussian mixture model based density estimate provides a link between corresponding spatial information shared among spectral images so as to find and restore the image edges via a PSF update. Model of the PSF was assumed to be a linear combination of Gaussian functions, therefore the blur identification process had to find only the corresponding scalar weights of each Gaussian function. Using the identified PSF, image restoration was performed by the iterative Richardson-Lucy algorithm. Experiments were conducted on four different biological samples using a hyper-spectral imaging system based on acousto-optic tunable filter in the visible spectral range (0.55 — 1.0 /μm). By running the proposed method, the quality of raw spectral images was substantially improved. Image quality improvements were quantified by a measure of contrast and demonstrate the potential of the proposed method for the correction of axial optical aberrations.
机译:在具有宽光谱范围的高光谱成像系统中,轴向光学像差可能会导致光谱范围某些部分中的图像强度明显模糊。轴向光学像差是由折射率变化引起的,该折射率变化取决于入射光的波长。为了校正轴向光学像差,需要识别图像采集系统的点扩展功能(PSF)。我们提出了一种多帧联合模糊识别和图像恢复方法,该方法可以最大化光谱图像之间局部图像能量分布的可能性。基于高斯混合模型的密度估计提供了光谱图像之间共享的相应空间信息之间的链接,以便通过PSF更新查找和还原图像边缘。假设PSF的模型是高斯函数的线性组合,因此模糊识别过程必须仅找到每个高斯函数的对应标量权重。使用确定的PSF,通过迭代的Richardson-Lucy算法执行图像恢复。使用基于声光可调滤光片的高光谱成像系统在可见光谱范围(0.55-1.0 /μm)中对四种不同的生物样品进行了实验。通过运行提出的方法,原始光谱图像的质量大大提高了。图像质量的改进通过对比措施进行了量化,并证明了所提出的方法可用于校正轴向光学像差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号