首页> 外文会议>Design-Process-Technology Co-optimization for Manufacturability VIII >Robust and automated solution for correcting hotspots locally using cost-function based OPC solver
【24h】

Robust and automated solution for correcting hotspots locally using cost-function based OPC solver

机译:使用基于成本函数的OPC求解器在本地校正热点的强大而自动化的解决方案

获取原文
获取原文并翻译 | 示例

摘要

In previous work, we introduced a new technology called Flexible Mask Optimization (FMO) that was successfully used for localized OPC correction. OPC/RET techniques such as model-based assist feature and process-window-based OPC solvers have become essential for addressing critical patterning issues at 2x and lower technology nodes. With an FMO flow, critical patterns were identified, classified and corrected in localized areas only, using advanced techniques. One challenge with this flow is that once the hotspots are identified, a user still has to come up with OPC solutions to address the hotspots. This process can be cumbersome and time consuming as different types of hotspots with new designs may require different recipes, causing delays to tapeout. What is required is a robust, powerful and automated OPC technique that can handle various types of hotspots, so an automatic hotspot correction flow can be established. In this work, we introduce a new cost-function-based OPC technique called Co-optimization OPC that can be used to correct various types of hotspots with minimum tuning effort. In this approach, the OPC solver simultaneously solves for all the segments in a patch including main and sub-resolution assist features (SRAF), applying additional user-defined cost function constraints such as MEEF, PV band, MRC and SRAF printability. Unlike conventional OPC solvers, Co-optimization solvers can also move and grow SRAFs, which further improves the process window. The key benefit of the Co-optimization OPC solution is that it can be used in a standard recipe to resolve many different hotspots encountered across various designs for a given layer. In this study, we demonstrate that Co-optimization OPC can be successfully used to address various types of hotspots across designs for selected 2x nm node line/space layers, as an example. These layers have been particularly challenging as they use single-exposure lithography with k1 around 0.3. Aggressive RET solutions are required to address the patterning challenges for this layer. Finally, we will report on implementation of the Co-Optimization OPC Recipe within the FMO framework for hotspot correction.
机译:在先前的工作中,我们介绍了一种称为“灵活掩模优化(FMO)”的新技术,该技术已成功用于本地OPC校正。 OPC / RET技术(例如基于模型的辅助功能和基于过程窗口的OPC求解器)对于解决2倍及更低技术节点的关键图案问题已变得至关重要。通过FMO流程,仅使用先进技术就可以在局部区域识别,分类和纠正关键模式。这种流程的一个挑战是,一旦确定了热点,用户仍然必须想出OPC解决方案来解决这些热点。此过程可能既麻烦又耗时,因为采用新设计的不同类型的热点可能需要不同的配方,从而导致流片延误。所需要的是一种健壮,强大且自动化的OPC技术,该技术可以处理各种类型的热点,因此可以建立自动的热点校正流程。在这项工作中,我们介绍了一种新的基于成本函数的OPC技术,称为协同优化OPC,该技术可用于以最少的调整工作来校正各种类型的热点。在这种方法中,OPC求解器同时应用包括MEEF,PV波段,MRC和SRAF可打印性等用户定义的成本函数约束条件,同时求解包括主要和次分辨率辅助功能(SRAF)的补丁中的所有分段。与传统的OPC求解器不同,协同优化求解器还可以移动和增长SRAF,从而进一步改善了过程窗口。共同优化OPC解决方案的主要优势在于,它可以用于标准配方中,以解决给定层在各种设计中遇到的许多不同热点。在此研究中,我们证明了协同优化OPC可以成功地用于解决针对选定2x nm节点线/空间层的整个设计中的各种类型的热点。这些层尤其具有挑战性,因为它们使用k1约为0.3的单曝光光刻技术。需要积极的RET解决方案来解决这一层的构图挑战。最后,我们将报告在FMO框架内用于热点校正的共同优化OPC食谱的实施情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号