首页> 外文会议>Design and manufacture of functional microcapsules and engineered particles >LOADING OF SILICA NANOPARTICLES IN BLOCK COPOLYMER VESICLES DURING POLYMERIZATION- INDUCED SELF-ASSEMBLY: ENCAPSULATION EFFICIENCY AND THERMALLY-TRIGGERED RELEASE
【24h】

LOADING OF SILICA NANOPARTICLES IN BLOCK COPOLYMER VESICLES DURING POLYMERIZATION- INDUCED SELF-ASSEMBLY: ENCAPSULATION EFFICIENCY AND THERMALLY-TRIGGERED RELEASE

机译:聚合诱导的自组装过程中嵌段共聚物囊中二氧化硅纳米颗粒的负载:包封效率和热引发释放

获取原文
获取原文并翻译 | 示例

摘要

Poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles can be prepared in the form of concentrated aqueous dispersions via polymerization-induced self-assembly (PISA). In the present study, these syntheses are conducted in the presence of varying amounts of silica nanoparticles of approximately 18 nm diameter. This approach leads to encapsulation of up to hundreds of silica nanoparticles per vesicle. Silica has high electron contrast compared to the copolymer and its thermal stability enables quantification of the loading efficiency via thermogravimetric analysis. Encapsulation efficiencies can be obtained using disk centrifuge photosedimentometry, since the vesicle density increases at higher silica loadings while the mean vesicle diameter remains essentially unchanged. Small angle X-ray scattering (SAXS) is used to confirm silica encapsulation, since a structure factor is observed at q ~ 0.25 nm-1. A new two-population model provides satisfactory data fits to the SAXS patterns and allows the mean silica volume fraction within the vesicles to be determined. Finally, the thermo-responsive nature of the diblock copolymer enables thermally-triggered release of the encapsulated silica nanoparticles simply by cooling to 0-10 oC, which induces a morphological transition. These silica-loaded vesicles constitute a useful model system for understanding the encapsulation of globular proteins, enzymes or antibodies within block copolymer vesicles for potential biomedical applications. They may also serve as an active payload for self-healing hydrogels or repair of biological tissue. Finally, we also encapsulate a model globular protein, bovine serum albumin, and calculate its loading efficiency using fluorescence spectroscopy.
机译:聚(甘油单甲基丙烯酸酯)-聚(甲基丙烯酸2-羟丙酯)二嵌段共聚物囊泡可以通过聚合诱导的自组装(PISA)以浓缩的水分散体的形式制备。在本研究中,这些合成是在存在不同数量的直径约18 nm的二氧化硅纳米粒子的情况下进行的。该方法导致每个囊泡包封多达数百个二氧化硅纳米颗粒。与共聚物相比,二氧化硅具有较高的电子对比度,并且其热稳定性能够通过热重分析定量负载效率。使用圆盘离心光沉降法可以得到包封效率,因为在较高的二氧化硅负载量下囊泡密度增加,而平均囊泡直径基本保持不变。小角度X射线散射(SAXS)用于确认二氧化硅的封装,因为在q〜0.25 nm-1处观察到结构因子。新的两人口模型为SAXS模式提供了令人满意的数据拟合,并可以确定囊泡中的平均二氧化硅体积分数。最后,二嵌段共聚物的热响应性使得仅通过冷却至0-10 oC就可以引发热引发胶囊化的二氧化硅纳米颗粒的释放,从而引发形态转变。这些载有二氧化硅的囊泡构成了有用的模型系统,可用于理解球形共聚物,球蛋白,酶或抗体在嵌段共聚物囊泡内的封装,以用于潜在的生物医学应用。它们还可以作为有效的负载,用于自修复水凝胶或修复生物组织。最后,我们还封装了模型球蛋白,牛血清白蛋白,并使用荧光光谱法计算了其负载效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号