首页> 外文会议>Design, Automation Test in Europe Conference Exhibition >Cellular neural network friendly convolutional neural networks — CNNs with CNNs
【24h】

Cellular neural network friendly convolutional neural networks — CNNs with CNNs

机译:细胞神经网络友好的卷积神经网络—带有CNN的CNN

获取原文

摘要

This paper discusses the development and evaluation of a Cellular Neural Network (CeNN) friendly deep learning network for solving the MNIST digit recognition problem. Prior work has shown that CeNNs leveraging emerging technologies such as tunnel transistors can improve energy or EDP of CeNNs, while simultaneously offering richer/more complex functionality. Important questions to address are what applications can benefit from CeNNs, and whether CeNNs can eventually outperform other alternatives at the application-level in terms of energy, performance, and accuracy. This paper begins to address these questions by using the MNIST problem as a case study.
机译:本文讨论了用于解决MNIST数字识别问题的细胞神经网络(CeNN)友好深度学习网络的开发和评估。先前的工作表明,利用隧道晶体管等新兴技术的CeNN可以改善CeNN的能量或EDP,同时提供更丰富/更复杂的功能。需要解决的重要问题是,哪些应用程序可以从CeNN中受益,以及在能量,性能和准确性方面,CeNN是否最终可以在应用程序级别上胜过其他替代方案。本文开始通过使用MNIST问题作为案例研究来解决这些问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号