首页> 外文会议>Design and analysis of algorithms >Graph Expansion Analysis for Communication Costs of Fast Rectangular Matrix Multiplication
【24h】

Graph Expansion Analysis for Communication Costs of Fast Rectangular Matrix Multiplication

机译:快速矩形矩阵乘法的通信成本的图展开分析

获取原文
获取原文并翻译 | 示例

摘要

Graph expansion analysis of computational DAGs is useful for obtaining communication cost lower bounds where previous methods, such as geometric embedding, are not applicable. This has recently been demonstrated for Strassen's and Strassen-like fast square matrix multiplication algorithms. Here we extend the expansion analysis approach to fast algorithms for rectangular matrix multiplication, obtaining a new class of communication cost lower bounds. These apply, for example to the algorithms of Bini et al. (1979) and the algorithms of Hopcroft and Kerr (1971). Some of our bounds are proved to be optimal.
机译:计算DAG的图形展开分析可用于在不适用先前方法(例如几何嵌入)的情况下获得通信成本下限。最近针对Strassen和类似Strassen的快速方阵乘法算法已证明了这一点。在这里,我们将扩展分析方法扩展到矩形矩阵乘法的快速算法,从而获得一类新的通信成本下界。这些适用于例如Bini等人的算法。 (1979)和Hopcroft and Kerr(1971)的算法。我们证明了某些界限是最优的。

著录项

  • 来源
  • 会议地点 Kibbutz Ein Gedi(IL)
  • 作者单位

    EECS Department, University of California, Berkeley, CA 94720;

    Mathematics Department and CS Division, University of California, Berkeley, CA 94720;

    Departments of Mathematics, University of California, Berkeley and Technische Universitaet Berlin;

    EECS Department, University of California, Berkeley, CA 94720;

    EECS Department, University of California, Berkeley, CA 94720;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号