首页> 外文会议>Database systems for advanced applications.;Part 1. >Ensemble Based Positive Unlabeled Learning for Time Series Classification
【24h】

Ensemble Based Positive Unlabeled Learning for Time Series Classification

机译:基于集合的正无标签学习用于时间序列分类

获取原文
获取原文并翻译 | 示例

摘要

Many real-world applications in time series classification tall into the class of positive and unlabeled (PU) learning. Furthermore, in many of these applications, not only are the negative examples absent, the positive examples available lor learning can also be rather limited. As such, several PU learning algorithms for time series classification have recently been developed to learn from a small set P of labeled seed positive examples augmented with a set U of unlabeled examples. The key to these algorithms is to accurately identify the likely positive and negative examples from U, but it has remained a challenge, especially for those uncertain examples located near the class boundary. This paper presents a novel ensemble based approach that restarts the detection phase several times to probabilistically label these uncertain examples more robustly so that a reliable classifier can be built from the limited positive training examples. Experimental results on time series data from different domains demonstrate that the new method outperforms existing state-of-the art methods significantly.
机译:时间序列分类中的许多实际应用都属于正面学习和未标记(PU)学习类别。此外,在许多这样的应用中,不仅不存在负面的例子,而且可以用于学习的正面的例子也相当有限。这样,最近已经开发了几种用于时间序列分类的PU学习算法,以从一小套P标记的种子阳性实例中学习,而P种子的阳性实例中增加了一组未标记的实例。这些算法的关键是从U准确识别可能的正例和负例,但这仍然是一个挑战,特别是对于那些位于类边界附近的不确定例。本文提出了一种基于整体的新颖方法,该方法可重新启动检测阶段数次,以更可靠地概率性地标记这些不确定示例,从而可以从有限的积极训练示例中建立可靠的分类器。来自不同领域的时间序列数据的实验结果表明,该新方法明显优于现有的最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号