首页> 外文会议>Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2006 >Distinguishing False from True Alerts in Snort by Data Mining Patterns of Alerts
【24h】

Distinguishing False from True Alerts in Snort by Data Mining Patterns of Alerts

机译:通过警报的数据挖掘模式在Snort中区分真实警报中的错误

获取原文
获取原文并翻译 | 示例

摘要

The Snort network intrusion detection system is well known for triggering large numbers of false alerts. In addition, it usually only warns of a potential attack without stating what kind of attack it might be. This paper presents a clustering approach for handling Snort alerts more effectively. Central to this approach is the representation of alerts using the Intrusion Detection Message Exchange Format, which is written in XML. All the alerts for each network session are assembled into a single XML document, thereby representing a pattern of alerts. A novel XML distance measure is proposed to obtain the distance between two such XML documents. A classical clustering algorithm, implemented based on this distance measure, is then applied to group the alert patterns into clusters. Our experiment with the MIT 1998 DARPA data sets demonstrates that the clustering algorithm can distinguish between normal sessions that give rise to false alerts and those sessions that contain real attacks, and in about half of the latter cases can effectively identify the name of the attack.
机译:Snort网络入侵检测系统以触发大量的错误警报而闻名。此外,它通常仅警告潜在的攻击,而没有说明可能的攻击类型。本文提出了一种用于更有效地处理Snort警报的群集方法。该方法的核心是使用入侵检测消息交换格式(以XML编写)表示警报。每个网络会话的所有警报都组合到一个XML文档中,从而代表了一种警报模式。提出了一种新颖的XML距离度量,以获取两个此类XML文档之间的距离。然后,基于此距离度量实现的经典聚类算法将警报模式分组为聚类。我们使用MIT 1998 DARPA数据集进行的实验表明,聚类算法可以区分引起误报的正常会话和包含真实攻击的会话,并且在后半数情况下,可以有效地识别攻击的名称。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号