首页> 外文会议>Data mining and bioinformatics >Identification of Phenotype-Defining Gene Signatures Using the Gene-Pair Matrix Based Clustering
【24h】

Identification of Phenotype-Defining Gene Signatures Using the Gene-Pair Matrix Based Clustering

机译:使用基于基因对矩阵的聚类识别表型定义基因签名

获取原文
获取原文并翻译 | 示例

摘要

Mining the "meaningful" clues from vast amount of expression profiling data remains to be challenge for biologists. After all the statistical tests, biologists often struggle deciding how to do next with a large list of genes without any obvious theme of mechanism, partly because most statistical analyses do not incorporate understanding of biological systems before hand. Here, we developed a novel method of "gene -pair difference within a sample" to identify phenotype-defining gene signatures, based on the hypothesis that a biological state is governed by the relative difference among different biological processes. For gene expression, it is relative difference among the genes within a sample (an individual, cell, etc), the highest frequency of occurrences a gene contributing to the within sample difference underline the contributions of genes in defining the biological states. We tested the method on three datasets, and identified the most important gene-pairs to drive the phenotypic differences.
机译:从大量的表达谱数据中挖掘“有意义的”线索对于生物学家来说仍然是挑战。经过所有的统计测试之后,生物学家经常难以决定下一步如何处理大量没有明显机制性基因的基因,部分原因是大多数统计分析并未事先结合对生物系统的了解。在此,我们基于生物学状态受不同生物学过程之间的相对差异支配的假设,开发了一种“样品内基因对差异”的新方法来鉴定表型定义基因签名。对于基因表达,它是样品内的基因(个体,细胞等)之间的相对差异,导致样品内差异的基因出现的最高频率突显了基因在定义生物学状态方面的作用。我们在三个数据集中测试了该方法,并确定了驱动表型差异的最重要的基因对。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号