首页> 外文会议>Cyber-Enabled Distributed Computing and Knowledge Discovery, 2009. CyberC '09 >Automatic image annotation based on decision tree machine learning
【24h】

Automatic image annotation based on decision tree machine learning

机译:基于决策树机器学习的自动图像标注

获取原文

摘要

With the rapid development of digital imaging technology, image annotation is an important and challenging task in image retrieval. At present, many machine learning methods have been applied to solve the problem of automatic image annotation (AIA). However, there exists enormous semantic expressive gap between the low-level image features and high-level semantic concepts. Due to the problem, the annotation performance of existing methods is not satisfactory, and needs to be further improved. This paper proposes an automatic annotation framework via a novel decision tree-based Bayesian (DTB) machine learning algorithm. It is a hybrid approach that attempts to utilize the advantages of both DT and Naive-Bayesian (NB). We firstly segment an image into different regions and extract low-level features of each region. From these features, high-level semantic concepts are obtained using a DTB learning algorithm. Finally, experiments conducted on the Corel dataset demonstrate the effectiveness of DTB machine learning. The DTB can not only enhance the classification accuracy, but also associate low-level region features with high-level image concepts. This method presents the advantages of the Bayesian method and the DT. Moreover, this semantic interpretation capability is a natural simulation of human learning.
机译:随着数字成像技术的飞速发展,图像标注是图像检索中一项重要而具有挑战性的任务。目前,许多机器学习方法已经被应用来解决自动图像注释(AIA)的问题。但是,在低级图像特征和高级语义概念之间存在巨大的语义表达差距。由于该问题,现有方法的注释性能不能令人满意,需要进一步提高。本文提出了一种基于新颖的基于决策树的贝叶斯(DTB)机器学习算法的自动注释框架。这是一种尝试利用DT和朴素贝叶斯(NB)优点的混合方法。我们首先将图像分割成不同的区域,并提取每个区域的低级特征。通过这些功能,可以使用DTB学习算法获得高级语义概念。最后,在Corel数据集上进行的实验证明了DTB机器学习的有效性。 DTB不仅可以提高分类精度,而且可以将低级区域特征与高级图像概念相关联。该方法展现了贝叶斯方法和DT的优点。而且,这种语义解释能力是人类学习的自然模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号