首页> 外文会议>Current Development in Abrasive Technology >Effects of Initial Temperature, Melting Temperature, Density, Heat Capacity and Work to Heat Conversion Factor on Thickness of Phase Transformed Adiabatic Shear Band
【24h】

Effects of Initial Temperature, Melting Temperature, Density, Heat Capacity and Work to Heat Conversion Factor on Thickness of Phase Transformed Adiabatic Shear Band

机译:初始温度,熔融温度,密度,热容量和功对热转化因子的影响对相变绝热剪切带厚度的影响

获取原文
获取原文并翻译 | 示例

摘要

Gradient-dependent plasticity where a characteristic length is involved to consider the microstructural effect (interactions and interplaying among microstructures due to the heterogeneous texture) is introduced into Johnson-Cook model considering the effects of strain-hardening, thermal softening and strain rate sensitivity. Effects of initial temperature, melting temperature, density, heat capacity and work to heat conversion factor on the occurrence of phase transformation and the thickness of phase transformed adiabatic shear band (ASB) in deformed ASB are numerically investigated. In deformed ASB, the temperature is highly nonuniform due to the microstructural effect. When the peak temperature in deformed ASB reaches the melting temperature of ductile metal, transformed ASB appears at the center of deformed ASB. With an increase of exerted plastic shear strain, the width of transformed ASB increases. Lower initial temperature, density and heat capacity as well as higher melting temperature and work to heat conversion factor lead to earlier occurrence of phase transformation (lower average plastic shear strain). For the same flow shear stress, the thickness of transformed ASB is wider at lower initial temperature and work to heat conversion factor as well as higher melting temperature, density and heat capacity. Gradient-dependent plasticity considering the microstructural effect can well predict the effects of physical parameters and initial temperature on the thickness of transformed ASB and ASB's development with decreasing flow shear stress, as cannot be predicted by classical elastoplastic theory applicable to completely homogenous material.
机译:考虑到应变硬化,热软化和应变速率敏感性的影响,将Johnson-Cook模型引入了与梯度有关的可塑性,其中涉及特征长度以考虑微观结构效应(由于异质织构而引起的微观结构之间的相互作用和相互作用)。数值研究了初始温度,熔化温度,密度,热容量和功对热转化因子的影响,以分析变形ASB中相变绝热剪切带(ASB)的发生和厚度。在变形的ASB中,由于微结构效应,温度高度不均匀。当变形的ASB的峰值温度达到韧性金属的熔化温度时,变形的ASB出现在变形的ASB的中心。随着施加的塑性剪切应变的增加,相变ASB的宽度增加。较低的初始温度,密度和热容量以及较高的熔融温度和热转换系数的作用导致较早出现相变(较低的平均塑性剪切应变)。对于相同的流动剪切应力,在较低的初始温度下,转变后的ASB的厚度较宽,并且对热转换因子以及较高的熔融温度,密度和热容量起作用。考虑到微观结构效应的梯度依赖性可塑性可以很好地预测物理参数和初始温度对相变ASB厚度的影响以及随着流动切应力降低而形成的ASB的发展,这是适用于完全均质材料的经典弹塑性理论无法预测的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号