首页> 外文会议>International Symposium on in Abrasive Technology >Effects of Initial Temperature, Melting Temperature, Density, Heat Capacity and Work to Heat Conversion Factor on Thickness of Phase Transformed Adiabatic Shear Band
【24h】

Effects of Initial Temperature, Melting Temperature, Density, Heat Capacity and Work to Heat Conversion Factor on Thickness of Phase Transformed Adiabatic Shear Band

机译:初始温度,熔化温度,密度,热容量的影响和加热转化因子对相变绝热剪切带厚度的影响

获取原文
获取外文期刊封面目录资料

摘要

Gradient-dependent plasticity where a characteristic length is involved to consider the microstructural effect (interactions and interplaying among microstructures due to the heterogeneous texture) is introduced into Johnson-Cook model considering the effects of strain-hardening, thermal softening and strain rate sensitivity. Effects of initial temperature, melting temperature, density, heat capacity and work to heat conversion factor on the occurrence of phase transformation and the thickness of phase transformed adiabatic shear band (ASB) in deformed ASB are numerically investigated. In deformed ASB, the temperature is highly nonuniform due to the microstructural effect. When the peak temperature in deformed ASB reaches the melting temperature of ductile metal, transformed ASB appears at the center of deformed ASB. With an increase of exerted plastic shear strain, the width of transformed ASB increases. Lower initial temperature, density and heat capacity as well as higher melting temperature and work to heat conversion factor lead to earlier occurrence of phase transformation (lower average plastic shear strain). For the same flow shear stress, the thickness of transformed ASB is wider at lower initial temperature and work to heat conversion factor as well as higher melting temperature, density and heat capacity. Gradient-dependent plasticity considering the microstructural effect can well predict the effects of physical parameters and initial temperature on the thickness of transformed ASB and ASB's development with decreasing flow shear stress, as cannot be predicted by classical elastoplastic theory applicable to completely homogenous material.
机译:考虑到应变硬化,热软化和应变率敏感性的影响,将涉及特征长度的梯度依赖性塑性来考虑微观结构效应(相互作用和非均相质地的微观结构相互作用)。数值研究了初始温度,熔化温度,密度,热容量和加热转化因子对变形ASB中变形ASB中的相变绝热剪切带(ASB)的厚度的影响。在变形的ASB中,由于微观结构效应,温度高度均匀。当变形ASB的峰值温度达到延性金属的熔化温度时,转化的ASB出现在变形ASB的中心。随着施加的塑料剪切应变的增加,转化的ASB的宽度增加。较低的初始温度,密度和热容量以及较高的熔化温度并加热转换因子的工作导致相变(下均塑料剪切菌株)的较早发生。对于相同的流动剪切应力,转化的ASB的厚度在较低的初始温度下更宽,并加热转换因子以及更高的熔化温度,密度和热容量。考虑到微观结构效果的梯度依赖性可塑性可以很好地预测物理参数和初始温度对转化的ASB和ASB的厚度的影响,随着流动剪切应力的降低,由于适用于完全均匀材料的经典弹塑性理论,不能预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号