首页> 外文会议>Constructive side-channel analysis and secure design. >Intelligent Machine Homicide Breaking Cryptographic Devices Using Support Vector Machines
【24h】

Intelligent Machine Homicide Breaking Cryptographic Devices Using Support Vector Machines

机译:使用支持向量机的智能机凶杀人密码设备

获取原文
获取原文并翻译 | 示例

摘要

In this contribution we propose the so-called SVM attack, a profiling based side channel attack, which uses the machine learning algorithm support vector machines (SVM) in order to recover a cryptographic secret. We compare the SVM attack to the template attack by evaluating the number of required traces in the attack phase to achieve a fixed guessing entropy. In order to highlight the benefits of the SVM attack, we perform the comparison for power traces with a varying noise level and vary the size of the profiling base. Our experiments indicate that due to the generalization of SVM the SVM attack is able to recover the key using a smaller profiling base than the template attack. Thus, the SVM attack counters the main drawback of the template attack, i.e. a huge profiling base.
机译:在此贡献中,我们提出了所谓的SVM攻击,这是一种基于概要分析的边信道攻击,它使用机器学习算法支持向量机(SVM)来恢复密码秘密。我们通过评估攻击阶段所需迹线的数量以实现固定的猜测熵,将SVM攻击与模板攻击进行比较。为了强调SVM攻击的优势,我们对具有变化的噪声水平并更改了配置基础大小的电源走线进行了比较。我们的实验表明,由于SVM的普遍性,SVM攻击能够使用比模板攻击小的分析基础来恢复密钥。因此,SVM攻击解决了模板攻击的主要缺点,即庞大的分析基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号