【24h】

Multi-sensor feature fusion methods and results

机译:多传感器特征融合方法及结果

获取原文
获取原文并翻译 | 示例

摘要

Analysts responsible for supporting time dominated threat decisions are faced with a growing volume of sensor data. Most efforts to increase discrimination among targets using multiple types of sensors encounter the same problems: 1. Sensor data are received in large volumes. 2. Sensor data are highly variable. 3. Signature features are represented by many dimensions. 4. Feature values are intercorrelated, random, or not related to target differences. 5. Decision rules for classifying new target data are difficult to define. This paper describes a new methodology for solving several problems: selecting signature features, reducing variability, increasing discrimination accuracy, and developing decision rules for classifying new target signatures. The results from using a combination of exploratory and multivariate statistical techniques show potential improvements over the traditional Dempster-Shafer approach. This project uses data from operational prototype sensors and vehicles of interest for threat analysis. Acoustic and seismic sensor data came from an unattended ground sensor and three military vehicles. Although the resulting algorithms are specific to the data set, the data screening and fusion methods tested in this project may be useful with other types of sensor and target data.
机译:负责支持时间主导型威胁决策的分析师面临着越来越多的传感器数据。使用多种类型的传感器来提高目标之间的区分度的大多数努力都遇到了相同的问题:1.大量接收传感器数据。 2.传感器数据变化很大。 3.签名特征由许多维度表示。 4.特征值相互关联,随机或与目标差异无关。 5.用于定义新目标数据的决策规则很难定义。本文介绍了一种解决以下问题的新方法:选择签名特征,减少可变性,提高判别准确性以及开发用于对新目标签名进行分类的决策规则。探索性和多元统计技术结合使用的结果表明,与传统的Dempster-Shafer方法相比,其潜在的改进之处。该项目使用来自运营原型传感器和感兴趣的车辆的数据进行威胁分析。声波和地震传感器数据来自无人值守的地面传感器和三辆军车。尽管生成的算法特定于数据集,但此项目中测试的数据筛选和融合方法可能对其他类型的传感器和目标数据很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号