首页> 外文会议>Conference on quantum information and computation VII; 20090416-17; Orlando, FL(US) >Twisting of filamentary vortex solitons demarcated by fast Poincare recursion
【24h】

Twisting of filamentary vortex solitons demarcated by fast Poincare recursion

机译:快速Poincare递归划分的丝状涡旋孤子的扭曲

获取原文
获取原文并翻译 | 示例

摘要

The dynamics of vortex solitons is studied in a BEC superfluid. A quantum lattice-gas algorithm (measurement-based quantum computation) is employed to examine the dynamical behavior vortex soliton solutions of the Gross-Pitaevskii equation (φ~4 interaction nonlinear Schroedinger equation). Quantum turbulence is studied in large grid numerical simulations: Kolmogorov spectrum associated with a Richardson energy cascade occurs on large flow scales. At intermediate scales, a new K~(-5.9) power law emerges, due to vortex filamentary reconnec-tions associated with Kelvin wave instabilities (vortex twisting) coupling to sound modes and the exchange of intermediate vortex rings. Finally, at very small spatial scales a k~(-3) power law emerges, characterizing fluid dynamics occurring within the scale size of the vortex ('ores themselves. Poincare recurrence is studied: in the free non-interacting system, a fast Poincare recurrence occurs for regular arrays of line vortices. The recurrence period is used to demarcate dynamics driving a nonlinear quant.um fluid towards turbulence, since fast recurrence is an approximate symmetry of the nonlinear quantum fluid at early times. This class of quantum algorithms is useful for studying BEC superfluid dynamics and, without modification, should allow for higher resolution simulations (with many components) on future quantum computers.
机译:在BEC超流体中研究了涡旋孤子的动力学。采用量子点阵气体算法(基于测量的量子计算)研究Gross-Pitaevskii方程(φ〜4相互作用非线性Schroedinger方程)的动力学行为涡旋孤子解。在大型网格数值模拟中研究了量子湍流:与Richardson能量级联相关的Kolmogorov光谱出现在大流量尺度上。在中等尺度上,由于与与声音模式耦合的开尔文波不稳定性(涡旋扭曲)相关联的涡旋丝状重新结合以及中间涡旋环的交换,出现了新的K〜(-5.9)幂律。最后,在非常小的空间尺度上,出现了ak〜(-3)幂律,表征了在涡尺度范围内发生的流体动力学(矿石本身。研究了Poincare递归:在自由的非相互作用系统中,Poincare的快速递归由于快速递归是非线性量子流体在早期的近似对称性,因此递归周期用于将驱动非线性量子流体趋向湍流的动力学划分边界。研究BEC超流体动力学,并且不加修改,应该允许在未来的量子计算机上进行更高分辨率的模拟(包括许多组件)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号