【24h】

Reduction of Computational Complexity in the Image/Video Understanding Systems with Active Vision

机译:主动视觉降低图像/视频理解系统中的计算复杂性

获取原文
获取原文并翻译 | 示例

摘要

The vision evolved not only as a recognition system, but also as a sensory system for reaching, grasping and other motion activities. In advanced creatures, it has become a component of prediction functions, allowing the creation of environmental models and activity planning. Fast information processing and decision making requires reduction of informational and computational complexities. The brain achieves this goal using symbolic coding, hierarchical compression, and selective processing of visual information. Network-Symbolic representation, where both systematic structural / logical methods and neural / statistical methods are the parts of a single mechanism, is the most feasible for such models. It converts visual information into the relational Network-Symbolic structures, instead of precise computations of 3-dimensional models. Narrow foveal vision provides separation of figure from ground, object identification, semantic analysis, and precise control of actions. Rough wide peripheral vision identifies and tracks salient motion, guiding foveal system to salient objects. It also provides scene context. Objects and other stable systems have coherent relational structures. Network-Symbolic transformations derive more abstract structures that allow invariably recognize a particular structure as an exemplar of class. Robotic systems, equipped with such smart vision, will be able to navigate in any environment, understand situation, and act accordingly.
机译:视觉不仅演变为识别系统,而且演变为到达,抓握和其他运动活动的感觉系统。在高级生物中,它已成为预测功能的组成部分,从而允许创建环境模型和活动计划。快速的信息处理和决策需要降低信息和计算的复杂性。大脑通过符号编码,分层压缩和视觉信息的选择性处理来实现此目标。对于系统模型而言,系统结构/逻辑方法和神经/统计方法都是单一机制的一部分的网络符号表示法是最可行的。它将视觉信息转换为关系网络符号结构,而不是对3维模型的精确计算。狭窄的中央凹视觉提供人物与地面的分离,对象识别,语义分析以及对动作的精确控制。粗略的周边视觉识别并跟踪突出运动,将中央凹系统引导至突出物体。它还提供了场景上下文。对象和其他稳定系统具有一致的关系结构。网络符号转换可导出更多抽象结构,这些结构总是将特定结构识别为类的示例。配备了这种智能视觉的机器人系统将能够在任何环境中导航,了解情况并采取相应的行动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号