首页> 外文会议>Conference on communication networks and distributed systems modeling and simulation(CNDS'97) >Task mapping on distributed shared memory systems using hopfield neural network
【24h】

Task mapping on distributed shared memory systems using hopfield neural network

机译:使用Hopfield神经网络的分布式共享内存系统上的任务映射

获取原文
获取原文并翻译 | 示例

摘要

In order to reduce the execution time of a parallel program, the tasks/threads of the program have to be carefull mapped onto the processors of a system. Most mapping methods used on current Multithreaded Distributed Shared Memory (DSM) systems only consider the workload balance. Due to the ignorance of the communicatio between tasks/threads, these methods may lead to such mappings have excessive cross-proessor communication, which degrades the performance. In this paper, we present a static method to map user programs onto a multithreaded DSM system. In contrast with the prievious work, this method takes into account both load balance and communication. It applies the Hopfield neural network on the mapping problem of the multithreaded DSM system to find a near-optimum apping for a program. We have implemented this method on Cohesion which is a DSM system supporting multithreading. Two programs, Successive-Over-Relaxation (SOR) and Vector Quantization (VQ), are used to test the effectiveness of this mapping method. The result shows that our method indeed can find the optimal mapping for these programs.
机译:为了减少并行程序的执行时间,必须小心地将程序的任务/线程映射到系统的处理器上。当前多线程分布式共享内存(DSM)系统上使用的大多数映射方法仅考虑工作负载平衡。由于任务/线程之间的通信不了解,因此这些方法可能导致此类映射具有过多的跨处理器通信,从而降低性能。在本文中,我们提出了一种将用户程序映射到多线程DSM系统上的静态方法。与繁琐的工作相反,此方法同时考虑了负载平衡和通信。它将Hopfield神经网络应用于多线程DSM系统的映射问题,以找到程序的接近最佳匹配。我们已经在支持多线程的DSM系统Cohesion上实现了此方法。使用两个程序,连续过度松弛(SOR)和矢量量化(VQ),来测试此映射方法的有效性。结果表明,我们的方法确实可以找到这些程序的最佳映射。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号