首页> 外文会议>Conference on Applications and Science of Computational Intelligence Ⅳ Apr 17-18, 2001, Orlando, USA >Moving Image Compression and Generalization Capability of Constructive Neural Networks
【24h】

Moving Image Compression and Generalization Capability of Constructive Neural Networks

机译:构造神经网络的运动图像压缩和泛化能力

获取原文
获取原文并翻译 | 示例

摘要

To date numerous techniques have been proposed to compress digital images to ease their storage and transmission over communication channels. Recently, a number of image compression algorithms using Neural Networks (NNs) have been developed. Particularly, several constructive feed-forward neural networks (FNNs) have been proposed by researchers for image compression, and promising results have been reported. At the previous SPIE AeroSense conference (2000), we proposed to use a constructive One-Hidden-Layer Feedforward Neural Network (OHL-FNN) for compressing still digital images. In this paper, we first investigate the generalization capability of the proposed OHL-FNN in the presence of additive noise for network training and/or generalization. Extensive experimental results for different scenarios are presented. It is revealed that the constructive OHL-FNN is not as robust to additive noise in input image as expected. Next, the constructive OHL-FNN is applied to moving images (video sequences). The first (or other specified) frame in a moving image sequence is used to train the network. The remaining moving images that follow are then generalized/compressed by this trained network. Three types of correlation-like criteria measuring the similarity of any two images are introduced. The relationship between the generalization capability of the constructed net and the similarity of images is investigated in some detail. It is shown that the constructive OHL-FNN is promising even for changing images such as those extracted from a "football game".
机译:迄今为止,已经提出了许多技术来压缩数字图像以简化其在通信信道上的存储和传输。最近,已经开发了许多使用神经网络(NN)的图像压缩算法。特别地,研究人员已经提出了几种构造前馈神经网络(FNN)进行图像压缩,并且已经报道了令人鼓舞的结果。在上届SPIE AeroSense会议(2000年)上,我们建议使用建设性的单层前馈神经网络(OHL-FNN)压缩静态数字图像。在本文中,我们首先研究在网络训练和/或泛化存在附加噪声的情况下,所提出的OHL-FNN的泛化能力。给出了针对不同场景的广泛实验结果。结果表明,建设性的OHL-FNN对输入图像中的附加噪声不像预期的那样健壮。接下来,将建设性的OHL-FNN应用于运动图像(视频序列)。运动图像序列中的第一个(或其他指定的)帧用于训练网络。然后,该训练后的网络将随后的其余运动图像进行概括/压缩。引入了三种类型的类似相关标准,用于测量任意两个图像的相似性。详细研究了构造网络的泛化能力与图像相似度之间的关系。结果表明,即使对于改变图像(例如从“足球比赛”中提取的图像),建设性的OHL-FNN也很有前途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号