首页> 外文会议>Conference on Applications of Artificial Neural Networks in Image Processing VIII Jan 23-24, 2003 Santa Clara, California, USA >Automatic Target Recognition of Cluttered FLIR Imagery Using Multistage Feature Extraction and Feature Repair
【24h】

Automatic Target Recognition of Cluttered FLIR Imagery Using Multistage Feature Extraction and Feature Repair

机译:利用多阶段特征提取和特征修复功能对杂波FLIR图像进行自动目标识别

获取原文
获取原文并翻译 | 示例

摘要

Automatic target recognition using forward-looking infrared imagery is a challenging problem because of the highly unpredictable nature of target thermal signatures. The high variability of target signatures, target obscuration, and clutter in the background results in distortion of target features, which are used by the target detection stage to identify a potential target. Consequently, the target detection stage produces a large number of false alarms. Distorted features h the potential targets also make accurate classification of targets difficult. The proposed technique, in essence attempts to repair the distorted features of~1 the targets to improve the target detection/classification accuracy. The proposed technique completes the feature extraction process in two steps: First, the feature vectors are extracted and classified either as complete or incomplete features using feed-forward neural networks. The incomplete features are then transformed into complete features. These features can then be used to identify/classify the targets.
机译:由于目标热签名的高度不可预测的特性,使用前瞻性红外图像进行自动目标识别是一个具有挑战性的问题。目标签名的高可变性,目标模糊和背景杂乱会导致目标特征失真,目标检测阶段将其用于识别潜在目标。因此,目标检测阶段会产生大量的错误警报。潜在目标变形的特征也会使目标的准确分类变得困难。所提出的技术实质上试图修复〜1个目标的失真特征,以提高目标检测/分类的准确性。所提出的技术分两步完成了特征提取过程:首先,使用前馈神经网络提取特征向量并将其分类为完整或不完整特征。然后将不完整的特征转换为完整的特征。然后可以使用这些功能来识别/分类目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号