首页> 外文会议>Conference on Algorithms and Systems for Optical Information Processing IV pt.1 1-2 August 2000 San Diego, USA >Segmenting Shadows from Synthetic Aperture Radar Imagery Using Edge-Enhanced Region Growing
【24h】

Segmenting Shadows from Synthetic Aperture Radar Imagery Using Edge-Enhanced Region Growing

机译:使用边缘增强区域增长分割合成孔径雷达图像中的阴影

获取原文
获取原文并翻译 | 示例

摘要

An enhanced rgion-growing approach for segmenting regions is introduced. A region-growing algorithm s merged with stopping criteria based on a robust noise-tolerant edge-detection routine. The region-grow algorithm is then used to segment the shadow region in a Synthetic Aperture Radar (SAR) image. This approach recognizes that SAR phenomenology causes speckle in imagery even to the sharow area due to energy injected from the surrounding cluttr and target. The speckled image makes determination of edges a difficult task even for the human observer. This paper outlines the edge-enhanced rgion grow approach and compares the results to three other segmentation approaches including the rgion-grow only approach, an automated-threshold approach based on a priori knowledge of the SR target information, and the manual segmentation approach. The comparison is shown using a tri-metric inter-algorithmic approach. The metrics used to evaluate the segmentation include percent-pixels same (PPS). the partial-dircted hausdorff (PDH) metric, and a shape-based metric based on the complex inner product (CIP), Experimental results indicate that the enhanced region-growing technique is a reasonable segmentation for the SAR trrget image chips obtaiend from the Moving and Stationary Target Acquisition and Recognition (MSTAR) program.
机译:介绍了一种用于区域分割的增强的r生长方法。基于鲁棒的耐噪声边缘检测例程,将区域增长算法与停止标准合并。然后使用区域增长算法对合成孔径雷达(SAR)图像中的阴影区域进行分割。这种方法认识到,SAR现象学是由于从周围的杂波和目标注入的能量而在图像中甚至对阴影区域都产生了斑点。斑点图像使得边缘的确定甚至对于人类观察者而言都是困难的任务。本文概述了边缘增强的区域增长方法,并将结果与​​其他三种分割方法进行了比较,包括仅区域增长方法,基于SR目标信息先验知识的自动阈值方法以及手动分割方法。使用三度量间算法方法显示了比较。用于评估细分的指标包括像素百分比相同(PPS)。实验结果表明,增强的区域生长技术是对SAR图像图像芯片进行合理分割的有效分割方法,它是部分方向的hausdorff(PDH)度量以及基于复杂内积(CIP)的基于形状的度量。和固定目标获取与识别(MSTAR)计划。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号