首页> 外文会议>Conf on Physics and Technology of Semiconductor Devices and Integrated Circuits >High-field-induced hot-carrier temperature bandgap narrowing and carrier multiplication in bulk semiconductors
【24h】

High-field-induced hot-carrier temperature bandgap narrowing and carrier multiplication in bulk semiconductors

机译:块状半导体中高场诱导的热载流子温度带隙变窄和载流子倍增

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Abstract: The steady state distribution function of charged carriers which takes into account the energy absorbed by the carriers in an electric field is described. Velocity-field characteristics so obtained agree well with the room-temperature experimental data for silicon samples of varying ohmic mobility. In the nondegenerate approximation, the saturation velocity obtained is comparable to the thermal velocity of the carriers (1.03 $MUL 10$+7$/ cm/s for electrons and 1.00 $MUL 10$+7$/ cm/s for holes), a result which is independent of the low-field mobility of the carriers, consistent with the experimental observations. The asymmetrical distribution function favors holes in the direction of the applied electric field and electrons in the opposite direction. Therefore, on a tilted band diagram, electrons tend to sink and holes tend to float, thereby reducing the effective bandgap. This increases the number of intrinsic carriers with the increase of electric field. An effective hot-electron temperature which accounts for this increase in carrier concentration also increases with the increase in electric field. Effective bandgap, effective hot-electron temperature, and carrier multiplication factor as a function of electric field are analyzed for various doping concentrations. The results so obtained extrapolate well in the limit of zero electric field, when well-known ohmic behavior is reproduced. The implications of this carrier multiplication on pinchoff condition, noise behavior, breakdown characteristics, etc. are discussed.
机译:摘要:描述了带电载流子的稳态分布函数,该函数考虑了电场中载流子吸收的能量。如此获得的速度场特性与变化的欧姆迁移率的硅样品的室温实验数据非常吻合。在非简并近似中,获得的饱和速度与载流子的热速度相当(电子为1.03 $ MUL 10 $ + 7 $ / cm / s,空穴为1.00 $ MUL 10 $ + 7 $ / cm / s),与实验结果一致的结果是,该结果与载流子的低场迁移率无关。非对称分布函数有利于在施加电场方向上形成空穴,而有利于在相反方向上形成电子。因此,在倾斜能带图上,电子趋于下沉,空穴趋于漂浮,从而减小了有效带隙。随着电场的增加,这增加了本征载流子的数量。引起载流子浓度增加的有效热电子温度也随电场的增加而增加。针对各种掺杂浓度,分析了有效带隙,有效热电子温度和载流子倍增系数作为电场的函数。当再现众所周知的欧姆行为时,如此获得的结果在零电场的极限中很好地外推。讨论了这种载波倍增对夹断条件,噪声行为,击穿特性等的影响。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号