【24h】

Paper Classification by Topic Grouping in Citation Networks

机译:引文网络中按主题分组的论文分类

获取原文
获取原文并翻译 | 示例

摘要

The enormous popularity of Web 2.0 social network services has led to much research on social network analysis (SNA). These studies focus on analyzing the complex interactive activities between users in the world of virtual networks. SNA has shown great potential in automatic document classification, especially in identifying citation networks of research papers and the references among them. This research adopts the Clique Percolation Method (CPM) to identify all overlapping subgroups in a citation network. In the grouping process, research papers with similar topics will be grouped into the same topic group. Two papers are regarded as having a relationship when the common citation rate between them is higher than the threshold. A modified TF-IDF calculates the weight of each keyword in the topic groups. The keyword-weight vector represents the main features of each group, while the category of a new-coming document is determined by a novel similarity function. All the papers under study are collected from the journal IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) published from 1979 to 2011.
机译:Web 2.0社交网络服务的巨大普及导致人们对社交网络分析(SNA)进行了大量研究。这些研究集中于分析虚拟网络世界中用户之间的复杂交互活动。 SNA在自动文档分类中显示出了巨大的潜力,尤其是在识别研究论文的引文网络及其参考文献中。这项研究采用集团渗透方法(CPM)来识别引用网络中所有重叠的子组。在分组过程中,具有相似主题的研究论文将被分组到同一主题组中。当两篇论文的共同引用率高于阈值时,它们被认为具有关系。修改后的TF-IDF计算主题组中每个关键字的权重。关键字权重向量代表每个组的主要特征,而新文档的类别由新颖的相似性函数确定。所有正在研究的论文均摘自1979年至2011年出版的《 IEEE模式分析与机器智能交易》(TPAMI)杂志。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号