首页> 外文会议>Computing and combinatorics >Strongly Chordal and Chordal Bipartite Graphs Are Sandwich Monotone
【24h】

Strongly Chordal and Chordal Bipartite Graphs Are Sandwich Monotone

机译:强弦和弦二部图是三明治单调

获取原文
获取原文并翻译 | 示例

摘要

A graph class is sandwich monotone if, for every pair of its graphs G_1 = (V, E_1) and G_2 = (V, E_2) with E_1 is contained in E_2, there is an ordering e_1,…, e_k; of the edges in E_2 E_1 such that G = (V, E_1 ∪ {e_1,…, e_i}) belongs to the class for every I between 1 and k. In this paper we show that strongly chordal graphs and chordal bipartite graphs are sandwich monotone, answering an open question by Bakonyi and Bono from 1997. So far, very few classes have been proved to be sandwich monotone, and the most famous of these are chordal graphs. Sandwich monotonicity of a graph class implies that minimal completions of arbitrary graphs into that class can be recognized and computed in polynomial time. For minimal completions into strongly chordal or chordal bipartite graphs no polynomial-time algorithm has been known. With our results such algorithms follow for both classes. In addition, from our results it follows that all strongly chordal graphs and all chordal bipartite graphs with edge constraints can be listed efficiently.
机译:如果对于E_2中包含E_1的每对图G_1 =(V,E_1)和G_2 =(V,E_2)的一对图,都有一个顺序e_1,…,e_k,则该图类为三明治单调。 E_2 E_1中的边的任何一个,使得G =(V,E_1∪{e_1,…,e_i})属于1和k之间的每个I的类。在本文中,我们证明强和弦图和和弦二部图是三明治单调,回答了Bakonyi和Bono自1997年以来的一个公开问题。到目前为止,已经证明极少数类是三明治单调的,而其中最著名的是和弦图。图类的三明治单调性意味着可以在多项式时间内识别和计算该类中任意图的最小完成度。对于最小化成强和弦或和弦二部图的完成,还没有多项式时间算法是已知的。根据我们的结果,这两个类都遵循这样的算法。此外,从我们的结果可以得出结论,可以有效列出所有具有边约束的强和弦图和所有和弦二部图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号