首页> 外文会议>Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on >Combining Laplacian eigenmaps and vesselness filters for vessel segmentation in X-ray angiography
【24h】

Combining Laplacian eigenmaps and vesselness filters for vessel segmentation in X-ray angiography

机译:结合拉普拉斯特征图和血管过滤器在X射线血管造影中进行血管分割

获取原文
获取原文并翻译 | 示例

摘要

Automatic vessel outline delineation from X-ray angiography is highly useful to cardiologists during interventional procedures, especially to measure clinical indices such as vessel diameters, perimeters and areas. The challenges of obtaining a fully automatic segmentation are plentiful: radiographic noise, irregular injection of contrast agent, vessel overlap, etc. While vesselness filters were proposed to detect probable vessel-like shapes, such techniques often fail to recover prominent vessels in a cluttered background, and may obtain irregular shapes when artifacts are present. In this study, we propose a novel approach to segment vessel-like structures, which combines vesselness filters and Laplacian eigenmaps. Our technique finds automatically a global optimum solution for the image segmentation problem. By using both vesselness and Laplacian features, this approach can recognize vessel-like shapes in the background, while preserving the regularity of the extracted shapes. A visual and quantitative evaluation of the proposed approach, on both simulated images and pediatric patient X-ray angiography data, demonstrates its usefulness and efficiency.
机译:X射线血管造影自动勾画血管轮廓对心脏病专家在介入治疗过程中非常有用,尤其是用于测量临床指标,例如血管直径,周长和面积。获得全自动分割的挑战很多:射线照相噪声,造影剂不规则注射,血管重叠等。尽管提出了血管过滤器来检测可能的血管样形状,但这种技术通常无法在杂乱的背景中恢复突出的血管,并且在存在伪影时可能会获得不规则的形状。在这项研究中,我们提出了一种分割血管状结构的新方法,该方法结合了血管性滤镜和拉普拉斯特征图。我们的技术会自动找到图像分割问题的全局最优解决方案。通过同时使用血管性和拉普拉斯特征,该方法可以在背景中识别血管状形状,同时保留提取形状的规则性。在模拟图像和儿科患者X射线血管造影数据上对提议的方法进行了视觉和定量评估,证明了其有效性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号