首页> 外文会议>Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on >Soft biometric trait classification from real-world face videos conditioned on head pose estimation
【24h】

Soft biometric trait classification from real-world face videos conditioned on head pose estimation

机译:基于头部姿势估计的现实面部视频中的软生物特征分类

获取原文
获取原文并翻译 | 示例

摘要

Recently, soft biometric trait classification has been receiving more attention in the computer vision community due to its wide range of possible application areas. Most approaches in the literature have focused on trait classification in controlled environments, due to the challenges presented by real-world environments, i.e. arbitrary facial expressions, arbitrary partial occlusions, arbitrary and nonuniform illumination conditions and arbitrary background clutter. In recent years, trait classification has started to be applied to real-world environments, with some success. However, the focus has been on estimation from single images or video frames, without leveraging the temporal information available in the entire video sequence. In addition, a fixed set of features are usually used for trait classification without any consideration of possible changes in the facial features due to head pose changes. In this paper, we propose a temporal, probabilistic framework first to robustly estimate continuous head pose angles from real-world videos, and then use this pose estimate to decide on the appropriate set of frames and features to use in a temporal fusion scheme for soft biometric trait classification. Experiments performed on large, real-world video sequences show that our head pose estimator outperforms the current state-of-the-art head pose approaches (by up to 51%), whereas our head pose conditioned biometric trait classifier (for the case of gender classification) outperforms the current state-of-the-art approaches (by up to 31%).
机译:近年来,由于其广泛的可能应用领域,软生物特征分类在计算机视觉界受到了越来越多的关注。由于现实环境所带来的挑战,即任意面部表情,任意部分遮挡,任意和不均匀的照明条件以及任意背景杂乱,文献中的大多数方法都集中在受控环境中的特征分类上。近年来,特征分类已开始应用于现实环境,并取得了一些成功。但是,重点是从单个图像或视频帧进行估计,而不利用整个视频序列中可用的时间信息。另外,通常将一组固定的特征用于特征分类,而不考虑由于头部姿势变化而导致的面部特征变化。在本文中,我们提出了一个时间概率框架,该框架首先从现实世界的视频中稳健地估计连续的头部姿势角度,然后使用该姿势估计来决定在软性的时间融合方案中使用的适当帧和特征集。生物特征分类。在大型,真实世界的视频序列上进行的实验表明,我们的头部姿势估计器的性能优于当前最先进的头部姿势方法(最多可达到51%),而我们的头部姿势条件式生物特征分类器(对于性别分类)的效果优于当前的最新方法(最多可提高31%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号