【24h】

Spatiotemporal multiple persons tracking using Dynamic Vision Sensor

机译:使用Dynamic Vision Sensor跟踪时空多人

获取原文
获取原文并翻译 | 示例

摘要

Although motion analysis has been extensively investigated in the literature and a wide variety of tracking algorithms have been proposed, the problem of tracking objects using the Dynamic Vision Sensor requires a slightly different approach. Dynamic Vision Sensors are biologically inspired vision systems that asynchronously generate events upon relative light intensity changes. Unlike conventional vision systems, the output of such sensor is not an image (frame) but an address events stream. Therefore, most of the conventional tracking algorithms are not appropriate for the DVS data processing. In this paper, we introduce algorithm for spatiotemporal tracking that is suitable for Dynamic Vision Sensor. In particular, we address the problem of multiple persons tracking in the occurrence of high occlusions. We investigate the possibility to apply Gaussian Mixture Models for detection, description and tracking objects. Preliminary results prove that our approach can successfully track people even when their trajectories are intersecting.
机译:尽管在文献中已经对运动分析进行了广泛的研究,并且已经提出了各种各样的跟踪算法,但是使用动态视觉传感器跟踪对象的问题需要稍微不同的方法。动态视觉传感器是受生物启发的视觉系统,可在相对光强度变化时异步生成事件。与常规视觉系统不同,此类传感器的输出不是图像(帧),而是地址事件流。因此,大多数常规跟踪算法均不适用于DVS数据处理。在本文中,我们介绍了适用于动态视觉传感器的时空跟踪算法。特别是,我们解决了多人跟踪高遮挡事件的问题。我们研究了将高斯混合模型应用于检测,描述和跟踪对象的可能性。初步结果证明,即使他们的轨迹相交,我们的方法也可以成功地跟踪他们。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号