首页> 外文会议>Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on >A learning based deformable template matching method for automatic rib centerline extraction and labeling in CT images
【24h】

A learning based deformable template matching method for automatic rib centerline extraction and labeling in CT images

机译:一种基于学习的可变形模板匹配方法,用于CT图像中肋骨中心线的自动提取和标记

获取原文
获取原文并翻译 | 示例

摘要

The automatic extraction and labeling of the rib centerlines is a useful yet challenging task in many clinical applications. In this paper, we propose a new approach integrating rib seed point detection and template matching to detect and identify each rib in chest CT scans. The bottom-up learning based detection exploits local image cues and top-down deformable template matching imposes global shape constraints. To adapt to the shape deformation of different rib cages whereas maintain high computational efficiency, we employ a Markov Random Field (MRF) based articulated rigid transformation method followed by Active Contour Model (ACM) deformation. Compared with traditional methods that each rib is individually detected, traced and labeled, the new approach is not only much more robust due to prior shape constraints of the whole rib cage, but removes tedious post-processing such as rib pairing and ordering steps because each rib is automatically labeled during the template matching. For experimental validation, we create an annotated database of 112 challenging volumes with ribs of various sizes, shapes, and pathologies such as metastases and fractures. The proposed approach shows orders of magnitude higher detection and labeling accuracy than state-of-the-art solutions and runs about 40 seconds for a complete rib cage on the average.
机译:在许多临床应用中,肋骨中心线的自动提取和标记是一项有用但具有挑战性的任务。在本文中,我们提出了一种结合肋骨种子点检测和模板匹配的新方法,以检测和识别胸部CT扫描中的每个肋骨。自下而上的基于学习的检测利用局部图像提示,而自上而下的可变形模板匹配强加了全局形状约束。为了适应不同肋骨保持架的形状变形,同时保持较高的计算效率,我们采用基于马尔可夫随机场(MRF)的铰接式刚性变换方法,然后采用主动轮廓模型(ACM)变形。与传统方法(分别对每个肋骨进行单独检测,追踪和标记)相比,新方法不仅由于整个肋骨形状的先前形状约束而更加坚固,而且消除了繁琐的后处理过程,例如肋骨配对和排序步骤,因为模板匹配期间会自动标记rib。为了进行实验验证,我们创建了一个带注释的数据库,其中包含112个具有挑战性的内容,其中包含各种大小,形状和病理(如转移瘤和骨折)的肋骨。所提出的方法显示出比最新解决方案高几个数量级的检测和标记精度,并且对于完整的肋骨保持架平均平均运行约40秒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号