首页> 外文会议>Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on >Higher level segmentation: Detecting and grouping of invariant repetitive patterns
【24h】

Higher level segmentation: Detecting and grouping of invariant repetitive patterns

机译:更高级别的细分:不变的重复模式的检测和分组

获取原文
获取原文并翻译 | 示例

摘要

The efficient and robust extraction of invariant patterns from an image is a long-standing problem in computer vision. Invariant structures are often related to repetitive or near-repetitive patterns. The perception of repetitive patterns in an image is strongly linked to the visual interpretation and composition of textures. Repetitive patterns are products of both repetitive structures as well as repetitive reflections or color patterns. In other words, patterns that exhibit near-stationary behavior provide a rich information about objects, their shapes, and their texture in an image. In this paper, we propose a new algorithm for repetitive pattern detection and grouping. The algorithm follows the classical region growing image segmentation scheme. It utilizes a mean-shift-like dynamics to group local image patches into clusters. It exploits a continuous joint alignment to (a) match similar patches and (b) refine the subspace grouping. The result of higher-level grouping for image patterns can be used to infer the geometry of object surfaces and estimate the general layout of a crowded scene.
机译:从图像中高效且鲁棒地提取不变模式是计算机视觉中长期存在的问题。不变结构通常与重复或接近重复的模式有关。图像中重复图案的感知与视觉解释和纹理组成紧密相关。重复图案是重复结构以及重复反射或颜色图案的产物。换句话说,表现出接近平稳行为的图案可提供有关图像中的对象,它们的形状及其纹理的丰富信息。在本文中,我们提出了一种用于重复模式检测和分组的新算法。该算法遵循经典的区域增长图像分割方案。它利用类似均值漂移的动力学将局部图像补丁分组为群集。它利用连续的关节对齐方式来(a)匹配相似的补丁并(b)改进子空间分组。图像模式的更高级别分组的结果可用于推断对象表面的几何形状并估计拥挤场景的总体布局。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号